THERMAL, DYNAMIC MECHANICAL ANALYSIS AND MECHANICAL PROPERTIES OF POLYBUTYLENE TEREPHTHALATE/POLYETHYLENE TEREPHTHALATE BLENDS

Authors

  • Muhammad Akmal Ahmad Saidi Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia http://orcid.org/0000-0001-9161-5665
  • Azman Hassan Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia http://orcid.org/0000-0002-4247-9158
  • Mat Uzir Wahit Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Lai Jau Choy Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia http://orcid.org/0000-0003-2651-0044
  • Hazleen Anuar Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia http://orcid.org/0000-0001-9199-0422

DOI:

https://doi.org/10.11113/jt.v82.14802

Keywords:

Polybutylene terephthalate, polyethylene terephthalate, polymer blend, dynamic mechanical analysis, mechanical and thermal properties

Abstract

Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and mechanical tests were conducted to characterize the properties of polybutylene terephthalate/polyethylene terephthalate (PBT/PET) blends. PBT and PET were blended at different PBT/PET ratios (80/20, 60/40, 40/60, 20/80) via twin screw extruder prior to injection molding. DSC characterization showed a single glass transition temperature for all PBT/PET blends indicating that the miscibility occurred in the amorphous region. From DMA results, loss modulus and tan δ also showed a single peak for all PBT/PET blends, confirming the DSC results. At room temperature, PBT/PET 20/80 has the highest storage modulus followed by PBT/PET 80/20 blend. PET has higher tensile strength, flexural strength, Young’s and flexural modulus than PBT but lower in elongation at break and impact strength. PBT/PET 80/20 blend has the highest tensile strength, flexural strength, elongation at break, and impact strength compared to other PBT/PET blends. PBT/PET 80/20 blend can be suggested as an optimum formulation with balanced mechanical properties in terms of stiffness and toughness.

References

Manson, J. A., and L. H. Sperling. 1977. Polymer Blends and Composites. New York: Plenum Press. 51-53.

DOI: https://doi.org/10.1007/978-1-4615-1761-0_2.

Avramova, N. 1995. Amorphous Poly(Ethylene Terephthalate)/Poly(Butylene Terephthalate) Blends: Miscibility and Properties. Polymer. 36: 801-808.

DOI: https://doi.org/10.1016/0032-3861(95)93111-X.

Samsudin, S. A., A. Hassan, M. Mokhtar, and S. M. S. Jamaludin. 2003. Effects of SEBS on Impact Strength and Flexural Modulus of Polystyrene/Polypropylene Blends. Jurnal Teknologi. 39: 35-44.

DOI: https://doi.org/10.11113/jt.v39.439.

Utracki, L. A., P. Mukhopadhyay, and R. K. Gupta. 2014. Polymer Blends: Introduction. In Utracki, L. A. & Wilkie, C. A. (Eds.). Polymer Blends Handbook. 2nd ed. New York: Springer. 19-21.

DOI: https://doi.org/10.1007/978-94-007-6064-6_3.

Halimatuddahliana, and H. Ismail. 2003. Prorties of Thermoplastic Elastomer based on PP/EPDM/ENR25 and PP/EPDM/NR Blends. Jurnal Teknologi. 39: 97-106.

DOI: https://doi.org/10.11113/jt.v39.432.

Stocco, A., V. L. Carrubba, S. Piccarolo, and V. Brucato. 2009. The Solidification Behavior of a PBT/PET Blend Over a Wide Range of Cooling Rate. J. Polym. Sci. Part B: Polym. Phys. 47: 799-810.

DOI: https://doi.org/10.1002/polb.21687.

Su, J., G. Yang, T. Zhou, X. Gao, K. Wang, and Q. Fu. 2013. Enhanced Crystallization Behaviors of Poly(Ethylene Terephthalate) via Adding Expanded Graphite and Poly(Ethylene Glycol). Colloid Polym. Sci. 291: 911-917.

DOI: https://doi.org/10.1007/s00396-012-2809-5.

Poulose, A. M., S. Piccarolo, D. Carbone, and M. Saeed Al-Zahrani. 2016. Influence of Plasticizers and Cryogenic Grinding on the High-Cooling-Rate Solidification Behavior of PBT/PET Blends. J. Appl. Polym. Sci. 133: 43083.

DOI: https://doi.org/10.1002/app.43083.

Savadekar, N. R., K. Jadhav, M. Mali, and S. T. Mhaske. 2014. Effect of Maleic Anhydride Modified Olefinic Elastomer and Plastomer on Impact Properties of PBT. Int. J. Plast. Technol. 18: 157-172.

DOI: https://doi.org/10.1007/s12588-014-9087-7.

Chang, B. P., A. K. Mohanty, and M. Misra. 2019. Sustainable Biocarbon as an Alternative of Traditional Fillers for Poly(Butylene Terephthalate)-Based Composites: Thermo-Oxidative Aging and Durability. J. Appl. Polym. Sci. 136: 47722.

DOI: https://doi.org/10.1002/app.47722.

Jafari, S. M. A., R. Khajavi, V. Goodarzi, M. R. Kalaee, and H. A. Khonakdar. 2019. Development of Degradable Poly(Ethylene Terephthalate)-Based Nanocomposites with the Aid of Polylactic Acid and Graphenic Materials: Thermal, Thermo-Oxidative and Hydrolytic Degradation Characteristics. J. Appl. Polym. Sci. 137: 48466.

DOI: https://doi.org/10.1002/app.48466.

Szostak, M. 2004. Mechanical and Thermal Properties of PET/PBT Blends. Mol. Cryst. Liq. Cryst. 416: 209-215.

DOI: https://doi.org/10.1080/15421400490481377.

Mishra, S. P. and B. L. Deopura. 1987. Fibers from Poly(Ethylene Terephthalate) and Poly(Butylene Terephthalate) Blends I. Mechanical Behavior. J. Appl. Polym. Sci. 33: 759-768.

DOI: https://doi.org/10.1002/app.1987.070330306.

Aravinthan, G. & D. D. Kale. 2005. Blends of Poly(Ethylene Terephthalate) and Poly(Butylene Terephthalate). J. Appl. Polym. Sci. 98: 75-82.

DOI: https://doi.org/10.1002/app.22017.

Backson, S. C. E., A. M. Kenwright, & R. W. A. Richards. 1995. A 13C NMR Study of Transesterification in Mixtures of Poly(Ethylene Terephthalate) and Poly(Butylene Terephthalate). Polymer. 36: 1991-1998.

DOI: https://doi.org/10.1016/0032-3861(95)91443-B.

Backsona, S. C. E., R. W. Richards, and S. M. King. 1999. Small Angle Neutron Scattering Investigation of Transesterification in Poly(Ethylene Terephthalate)-Poly(Butylene Terephthalate) Mixtures. Polymer. 40: 4205-4211.

DOI: https://doi.org/10.1016/S0032-3861(98)00677-6.

Nofar, M. and H. Oğuz. 2019. Development of PBT/Recycled‑PET Blends and the Influence of Using Chain Extender. J. Polym. Environ. 27: 1404-1417.

DOI: https://doi.org/10.1007/s10924-019-01435-w.

Gaylord, N. G. 1975. Copolymer, Polymer Blends, and Composites. In Advances in Chemistry Series. Washington, DC: American Chemical Society. 76.

DOI: https://doi.org/10.1021/ba-1975-0142.ch007.

Cassu, S. N. and M. I. Felisberti. 2005. Dynamic Mechanical Behavior and Relaxations in Polymers and Polymeric Blends. Quím. Nova. 28: 255-263.

DOI: https://doi.org/10.1590/S0100-40422005000200017.

Mat Desa, M. S. Z., A. Hassan, A. Arsad, and R, Arjmandi. 2019. Effect of Core–Shell Rubber Toughening on Mechanical, Thermal, and Morphological Properties of Poly(Lactic Acid)/Multiwalled Carbon Nanotubes Nanocomposites. J. Appl. Polym. Sci. 136: 47756.

DOI: https://doi.org/10.1002/app.47756.

Illers, K. H. 1980. Heat of Fusion and Specific Volume of Poly(Ethylene Terephthalate) and Poly(Butylene Terephthalate). Colloid Polym. Sci. 258: 117-124.

DOI: https://doi.org/10.1007/BF01498267.

Granado, A., J. I. Eguiazábal, and J. Nazábal. 2004. Preparation of Poly(Ethylene Terephthalate)/Poly(Amino Ether) Blends by Means of the Addition of Poly(Butylene Terephthalate). Macromol. Mater. Eng. 289: 997-1003.

DOI: https://doi.org/10.1002/mame.200400119.

Tao, J., H. F. Jin, and T. Sun. 1991. A Study on Compatibility of PBT/PET Binary Blended Fibre. Plast. Rub. Compos. Pro. 16: 49-53.

Nichols, M. E. and R. E. Robertson. 1992. The Multiple Melting Endotherms from Poly(Butylene Terephthalate). J. Polym. Sci. Part B: Polym. Phys. 30: 755-768.

DOI: https://doi.org/10.1002/polb.1992.090300713.

Deng, B., Y. Guo, S. Song, S. Sun, and H. Zhang. 2016. Effect of Core-Shell Particles Dispersed Morphology on the Toughening Behavior of PBT/PC Blends. J. Polym. Res. 23: 210.

DOI: https://doi.org/10.1007/s10965-016-1106-2.

Furushima, Y., S. Kumazawa, H. Umetsu, A. Toda, E. Zhuravlev, and C. Schick. 2017. Melting and Recrystallization Kinetics of Poly(Butylene Terephthalate). Polymer. 109: 307-314.

DOI: https://doi.org/10.1016/j.polymer.2016.12.053.

Kim, J. H., W. S. Lyoo, and W. S. Ha. 2001. Sequence Analysis of Poly(ethylene terephthalate)/Poly(butylene terephthalate) Copolymer Prepared by Ester-Interchange Reactions. J. Appl. Polym. Sci. 82: 159-168.

Shieh, Y. T., Y. S. Lin, Y. K. Twu, H. B. Tsai, and R. H. Lin. 2010. Effect of Crystallinity on Enthalpy Recovery Peaks and Cold-Crystallization Peaks in PET via TMDSC and DMA Studies. J. Appl. Polym. Sci. 116: 1334-1341.

DOI: https://doi.org/10.1002/app.31570.

Meng, C. and J. Qu. 2018. Mechanical and Thermal Properties of Polybutylene Terephthalate/Ethylene-Vinyl Acetate Blends Using Vane Extruder. E-Polymers. 18: 67-73.

DOI: https://doi.org/10.1515/epoly-2017-0073.

Downloads

Published

2020-08-10

Issue

Section

Science and Engineering

How to Cite

THERMAL, DYNAMIC MECHANICAL ANALYSIS AND MECHANICAL PROPERTIES OF POLYBUTYLENE TEREPHTHALATE/POLYETHYLENE TEREPHTHALATE BLENDS. (2020). Jurnal Teknologi, 82(5). https://doi.org/10.11113/jt.v82.14802