RAPID INVESTIGATION OF THE METABOLITE CONTENT IN HIBISCUS SABDARIFFA var. UKMR-2 CULTIVATED UNDER THE INFLUENCE OF ELEVATED CO2 USING TRI-STEP FT-IR SPECTROSCOPY
DOI:
https://doi.org/10.11113/jurnalteknologi.v83.14825Keywords:
H. sabdariffa var. UKMR-2, elevated [CO2], infrared based fingerprinting, second derivative infrared, 2D-IR synchronous correlationAbstract
Rapid methods based on untargeted analysis technique such as Fourier Transform Infrared (FT-IR) spectroscopy can provide much faster and easier solution for food authentication. However, studies on the metabolite content in UKMR-2 calyces using FT-IR spectroscopy has not been reported yet in any previous studies. Thus, the present study was performed to analyze the differences in metabolite content in UKMR-2 calyces under the influences of different [CO2] treatment by applying tri-step infrared based fingerprinting. The UKMR-2 plant cultivation was exposed to ambient [CO2] (400 µmol/mol) and elevated [CO2] (800 µmol/mol) treatment. The UKMR-2 calyx extracts were analysed by conventional infrared (1D-IR), second derivative infrared (SD-IR) and two-dimensional correlation infrared (2D-IR) spectroscopy. The 1D-IR spectrum results revealed a similar absorption spectrum in the range of 1900 - 650 cm-1, which suggest similar major metabolites content present in both extracts. For SD-IR spectrum, both treatments clearly showed have more peaks with different shape, position and intensity in the range of 1650 - 1450 cm-1 and 1200 - 950 cm-1, which is likely to have different flavonoid and carbohydrate content in UKMR-2 calyces. The 2D-IR synchronous correlation spectrum in the range of 1000 – 650 cm-1 clearly distinguished the metabolite content in the UKMR-2 calyx extract from different [CO2] treatment. Therefore, this tri-step infrared based fingerprinting has the potential as one of the effective methods to discriminate extract samples with similar infrared fingerprint features and indicate that the metabolite content in UKMR-2 calyces were influenced by different [CO2] treatments.
References
Bureau, S., Ruiz, D., Reich, M., Gouble, B., Bertrand, D., Audergon, J., and Renard, C. 2009. Application of ATR-FTIR for a Rapid and Simultaneous Determination of Sugars and Organic Acids in Apricot Fruit. Food Chemistry. 115(3): 1133–1140.
DOI: https://doi.org/10.1016/j.foodchem.2008.12.100.
Zuo, L., Sun, S.Q., Zhou, Q., Tao, J.X., and Noda, I. 2003. 2D-IR Correlation Analysis of Deteriorative Process of Traditional Chinese Medicine ‘Qing Kai Ling’ Injection. Journal of Pharmaceutical and Biomedical Analysis. 30(5): 1491–1498.
DOI:http://dx.doi.org/10.1016/s0731-7085(02)00485-5.
Xu, C.H., Sun, S.Q., Guo, C.Q., Zhou, Q., Tao, J.X., and Noda, I. 2006. Multi-steps Infrared Macro-fingerprint Analysis for Thermal Processing of Fructus viticis. Vibrational Spectroscopy 41(1): 118–125.
DOI: https://doi.org/10.1016/j.vibspec.2006.01.014.
Wu, Y.W., Sun, S.Q., Zhao, J., Yi, L., and Zhou, Q. 2008. Rapid Discrimination of Extracts of Chinese Propolis and Poplar Buds by FT-IR and 2D-IR Correlation Spectroscopy. Journal of Molecular Structure. 833-884: 48–50.
DOI: https://doi.org/10.1016/j.molstruc.2007.12.009.
Selaimia, R., Oumeddour, R., and Nigri, S. 2017. The Chemometrics Approach Applied to FTIR Spectral Data for the Oxidation Study of Algerian Extra Virgin Olive Oil. International Food Research Journal. 24(3): 1301-1307.
Schulz, H., and Baranska, M. 2007. Identification and Quantification of Valuable Plant Substances by IR and Raman Spectroscopy. Vibrational Spectroscopy. 43(1): 13-18.
DOI: https://doi.org/10.1016/j.vibspec.2006.06.001.
Salbiah Man., Ling Sui Kiong., Nor Azlianie Ab’lah., and Zunoliza Abdullah. 2015. Differentiation of the White and Purple Flower forms of Orthosiphon aristatus (Blume) Miq. By 1D and 2D Correlation IR Spectroscopy. Jurnal Teknologi (Sciences & Engineering). 77(3): 81–86.
Ferreira, D., Barros, A., Coimbra, M.A., and Delgadillo, I. 2001. Use of FTIR Spectroscopy to Follow the Effect of Processing in Cell Wall Polysaccharide Extracts of a Sun-dried Pear. Carbohydrate Polymers. 45(2): 175–182.
DOI: https://doi.org/10.1016/S0144-8617(00)00320-9.
Noda, I. 1986. Two-dimensional Infrared (2D IR) Spectroscopy. Bulletin of the American Physical Society. 31: 520–524.
Noda, I. 1989. Two-dimensional Infrared Spectroscopy. Journal of the American Chemical Society. 111(21): 8116–8118.
DOI: https://doi.org/10.1021/ja00203a008.
Wong, P.K., Salmah, Y., Ghazali, H.M., and Che Man. Y.B. 2002. Physicoâ€Chemical Characteristics of Roselle ( Hibiscus sabdariffa L.). Nutrition and Food Science. 32(2): 68–73.
Puro, K., Sunjukta, R., Samir, S., Ghatak, S., Shakuntala, I., and Sen, A. 2014. Medicinal Uses of Roselle Plant (Hibiscus sabdariffa L.): A Mini Review. Indian Journal of Hill Farming. 27(1): 81-90.
Obouayeba, A.P., Djyh, N.B., Diabate, S., Djaman, A.J., N’guessan, J.D., Kone, M., and Kouakou, T.H. 2014. Phytochemical and Antioxidant Activity of Roselle (Hibiscus sabdariffa L.) Petal Extracts. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 5(2): 1453 – 1465.
Ajoku, G.A., Okwute, S.K., and Okogun, J.I. 2015. Isolation of Hexadecanoic Acid Methyl Ester and 1,1,2-ethanetricarboxylic acid- 1-hydroxy-1, 1-dimethyl ester from the Calyx of Green Hibiscus sabdariffa (Linn). Natural Products Chemistry & Research. 3(2): 1-5.
DOI : http://dx.doi.org/10.4172/2329-6836.1000169.
Idris, M.H.M., Siti Balkis, B., Mohamad, O., and Jamaludin, M. 2012. Protective Role of Hibiscus sabdariffa Calyx Extract Against Streptozotocin Induced Sperm Damage in Diabetic Rats. EXCLI Journal. 11: 659-669.
Satirah, Z., Siti Nor Farhanah, S.N.S., and Siti Balkis, B. 2016. Hibiscus sabdariffa Linn. (Roselle) Protects Against Nicotine-Induced Heart Damage in Rats. Sains Malaysiana. 45(2): 207–214.
Lislivia, Y., Siti Aishah, M.A., Jalifah, L., Norsyahida, M.F., Siti Balkis, B., and Satirah, Z. 2017. Roselle is Cardioprotective in Diet-Induced Obesity Rat Model with Myocardial Infarction. Life Sciences. 191: 157-165.
DOI : http://dx.doi.org/10.1016/j.lfs.2017.10.030
Osman, M., Golam, F., Saberi, S., Majid, N.A., Nagoor, N.H. and Zulqarnain. M. 2011. Morpho-agronomic Analysis of Three Roselle (Hibiscus sabdariffa L.) Mutants in Tropical Malaysia. Australian Journal of Crop Science. 5(10):1150-6.
Weigel, H.J., and Manderscheid, R. 2016. FACE with Crops: Data for Climate Change Impact Models. Braunschweig: Johann Heinrich von Thünen-Institut, 6 p, Thünen à la carte 4a.
DOI : http://dx.doi.org/10.3220/CA1455111790000.
De Souza, A.P., Cocuron, J., Garcia, A.C., Alonso, A.P., and Buckeridge, M.S. 2015. Changes in Whole-plant Metabolism During the Grain-filling Stage in Sorghum Grown under Elevated CO2 and Drought. Plant Physiology. 169: 1755–1765.
DOI : http://dx.doi.org/10.1104/pp.15.01054
Goufo, P., Pereira, J., Figueiredo, N., Beatriz, M., Oliveira, P.P., Carranca, C., Rosa, E.A.S., and Trindade, H. 2014. Effect of Elevated Carbon Dioxide (CO2) on Phenolic Acids, Flavonoids, Tocopherols, Tocotrienols, γ-Oryzanol and Antioxidant Capacities of Rice (Oryza sativa L.). Journal of Cereal Science. 59:15-24.
DOI : http://dx.doi.org/10.1016/j.jcs.2013.10.013
Siti Aishah, M.A., Che Radziah, C.M.Z., and Jalifah, L. 2019. Influence of Elevated CO2 on the Growth and Phenolic Constituents Production in Hibiscus sabdariffa var. UKMR-2. Jurnal Teknologi. 81(3): 109–118.
DOI: https://doi.org/10.11113/jt.v81.13241.
IPCC. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Core Writing Team, Pachauri, R.K. and Meyer, L.A. IPCC, Geneva, Switzerland. p. 151.
Pavia, D., Lampman, G., Kriz, G., and Vyvyan, J. 2014. Introduction to Spectroscopy. Stamford: Cengage Learning.
Choong, Y.K., Yousof, N.S.A.M., Wasiman, M.I., Jamal, J.A., and Ismail, Z. 2016. Determination of Effects of Sample Processing on Hibiscus sabdariffa L. using Tri-step Infrared Spectroscopy. Journal of Analytical & Bioanalytical Techniques. 7(5): 1-9.
DOI: http://dx.doi.org/10.4172/2155-9872.1000335.
Taiz, L., and Zeiger, E. 2010. Plant Physiology. Sunderland: Sinauer Associates.
Abbas, O., Compère, G., Larondelle, Y., Pompeu, D., Rogez, H., and Baeten, V. 2017. Phenolic Compound Explorer: A Mid-infrared Spectroscopy Database. Vibrational Spectroscopy. 92: 111–118.
DOI: http://dx.doi.org/10.1016/j.vibspec.2017.05.008
Socrates, G. 1997. Infrared Characteristic Group Frequencies. Chichester: J. Wiley & Sons.
He, J., Rodriguez-Saona, L.E., and Giusti, M.M. 2007. Mid-infrared Spectroscopy for Juice Authentication-rapid Differentiation of Commercial Juices. Journal of Agricultural and Food Chemistry. 55(11): 4443– 4452.
Lu, X., Wang, J., Al-Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., and Rasco, B.A. 2011. Determination of Total Phenolic Content and Antioxidant Capacity of Onion (Allium cepa) and Shallot (Allium oschaninii) using Infrared Spectroscopy. Food Chemistry. 129(2): 637-644.
Stuart, B.H. 2004. Infrared Spectroscopy: Fundamentals and Applications. England: John Wiley & Sons.
Nakanishi, K., and Solomon, P.H. 1977. Infrared Absorption Spectroscopy. San Franciso: USA.
Chis, A., Fetea, F., Taoutaou, A., and Socaciu, C. 2010. Application of FTIR Spectroscopy for a Rapid Determination of some Hydrolytic Enzymes Activity on Sea Buckthorn Substrate. Romanian Biotechnological Letters. 15(6): 5738-5744.
Komoda, Y., Nakamura, H., Ishihara, S., Uchida, M., Kohda, H., and Yamasaki, K. 1985. Structures of new terpenoid constituents of Ganoderma lucidum (Fr.) Karst. (Polyporaceae). Chemical and Pharmaceutical Bulletin. 33(11): 4829–35.
Agatonovic-Kustrin, S., Morton, D.W., and Yusof, A.P. 2013. The Use of Fourier Transform Infrared (FTIR) Spectroscopy and Artificial Neural Networks (ANNs) to Assess Wine Quality. Modern Chemistry and Application. 1(4): 1-8.
DOI:10.4172/2329-6798.1000110.
Wang, Y., Xu, C.H., Wang, P., Sun, S.Q., Chen, J.B., Li, J., Chen, T., and Wang, J.B. 2011. Analysis and Identification of Different Animal Horns by a Three-stage Infrared Spectroscopy. Spectrochimica Acta A. 83(1): 265–270.
Xu, C., Jia, X., Xu, R., Wang, Y., Zhou, Q., and Sun, S. 2013. Rapid Discrimination of Herba Cistanches by Multi-step Infrared Macro-fingerprinting Combined with Soft Independent Modeling of Class Analogy (SIMCA). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 114: 421–431.
DOI: http://dx.doi.org/10.1016/j.saa.2013.05.024.
Choong, Y.K. 2017. Fourier Transform Infrared and Two-Dimensional Correlation Spectroscopy for Substance Analysis. In: Nicolic, G. Fourier Transform. 175-190. London: IntechOpen.
Ozacar, M., Soykan, C., and Sengil, I.A. 2006. Studies on Synthesis, Characterization and Metal Adsorption of Mimosa and Valonia Tannin Resins. Journal of Applied Polymer Science. 102(1): 786-797.
DOI: https://doi.org/10.1002/app.23944.
Su, X., Zhang, H., Shao, J., and Wu, H. W. 2007. Theoretical Study on the Structure and Properties of Crenulatin Molecule in Herb Rhodiola crenulata. Journal of Molecular Structure. 847(1-3): 59–67.
DOI: https://doi.org/10.1016/j.theochem.2007.08.034.
Chis, A., Fetea, F., Matei, H., and & Socaciu, C. 2011. Evaluation of Hydrolytic Activity of Different Pectinases on Sugar Beet (Beta vulgaris) Substrate using FT-MIR Spectroscopy. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 39(2): 99-104.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.