SIMULTANEOUS ADSORPTION AND ANTIBACTERIAL ACTIVITIES OF SURFACTANT-MODIFIED KAOLINITE
DOI:
https://doi.org/10.11113/jt.v82.14926Keywords:
Kaolinite, surfactant, adsorption, antibacterial activityAbstract
Water contamination problems caused by various contaminants (i.e. anionic and cationic compounds, and pathogenic bacteria) necessitate the advanced material development for simultaneous adsorption and antibacterial actions. In this study, kaolinite (Kao) was modified with surfactant hexadecyltrimethyl ammonium bromide (HDTMA-Br) (0.1, 1.0 and 4.0 mM) and they were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and dispersion behaviour. No structural changes occurred after the adsorption of HDTMA-Br molecules on the Kao. In the simultaneous action study, the samples were tested for their adsorption capacity for cationic (methylene blue, MB) and anionic dyes (acid orange 7, AO7), and for antibacterial activities against Gram-negative (Escherichia coli ATCC11229) and Gram-positive bacteria (Staphylococcus aureus ATCC6538). HDTMA-modified Kao enhanced the adsorption of AO7 and the trend was correlated with the HDTMA adsorbed on Kao. The modified Kao with the highest HDTMA-Br concentration (KaoH4.0) showed 100% removal capacity for both dyes (AO7 and MB) and reduced the highest amount of both bacterial colonies. Therefore, the kaolinite modified with surfactant simultaneously enhanced the adsorption capacity of both positive and negative compounds, and increased the antibacterial activities against a wide spectrum of bacteria.
References
de Almeida, E. J. R., Mazzeo, D. E. C., Sommaggio, L. R. D., Marin-Morales, M. A., de Andrade, A. R., and Corso, C. R. 2019. Azo Dyes Degradation and Mutagenicity Evaluation with a Combination of Microbiological and Oxidative Discoloration Treatments. Ecotoxicology and Environmental Safety. 183: 109484. DOI: https://doi.org/10.1016/j.ecoenv.2019.109484.
Isah, M., Asraf, M. H., Malek, N. A. N. N., Jemon, K., Sani, N. S., Muhammad, M. S., Wahab, M. F. A., and Saidin, M. A. R. 2019. Preparation and Characterization of Chlorhexidine Modified Zinc-Kaolinite and its Antibacterial Activity against Bacteria Isolated from Water Vending Machine. Journal of Environmental Chemical Engineering. 8: 103545. DOI: https://doi.org/10.1016/j.jece.2019.103545.
Aryantie, W. N., Awaluddin, M. Z. A., and Malek, N. A. N. N. 2019. Characterization and Antibacterial Activity of Streptomycin Antibiotic Loaded Organo-Kaolinite. IOP Conference Series: Earth and Environmental Science. 276: 012001. DOI: https://doi.org/10.1088/1755-1315/276/1/012001.
Malek, N. A. N. N., and Ramli, N. I. A. 2019. Preparation and Antibacterial Properties of Cetylpyridinium Bromide-Modified Silver-Loaded Kaolinite. Materials Research Express. 6: 094006. DOI: https://doi.org/10.1088/2053-1591/ab2e52.
Magana, S. M., Quintana, P., Aguillar, D. H., Toledo, J. A., Ãngeles-Chavez, C., Cortes, M. A., Leon, L., FreilEe-Pelegrin, Y., Lopez, T., and Sanchez, R. M. T. 2008. Antibacterial Activity of Montmorillonites Modified with Silver. Journal of Molecular Catalysis Chemical. 281: 192-199. DOI: https://doi.org/10.1016/j.molcata.2007.10.024.
Malek, N. A. N. N., and Ramli, N. I. A. 2015. Characterization and Antibacterial Activity of Cetylpyridinium Bromide (CPB) Immobilized on Kaolinite with Different CPB Loadings. Applied Clay Science. 109-110: 8-14. DOI: https://doi.org/10.1016/j.clay.2015.03.007.
Srinivasan, A., and Viraraghavan, T. 2010. Decolorization of Dye Wastewaters by Biosorbents: A Review. Journal of Environmental Management. 91: 1915-1929. DOI: https://doi.org/10.1016/j.jenvman.2010.05.003.
Jang, W., Park, Y., Park, C., Seo, Y., Kim, J. H., Hou, J., and Byun, H. 2020. Regulating the Integrity of Diverse Composite Nanofiber Membranes using an Organoclay. Journal of Membrane Science. 598: 117670. DOI: https://doi.org/10.1016/j.memsci.2019.117670.
Cifuentes, A., Bernal, J. L., and Diez-Masa, J. C. 1997. Determination of Critical Micelle Concentration Values using Capillary Electrophoresis Instrumentation. Analytical Chemistry. 69: 4271-4274. DOI: https://doi.org/10.1021/ac970696n.
Jou, S. K., and Malek, N. A. N. N. 2016. Characterization and Antibacterial Activity of Chlorhexidine Loaded Silver-Kaolinite. Applied Clay Science. 127: 1-9. DOI: https://doi.org/10.1016/j.clay.2016.04.001.
Tunney, J. J., and Detellier, C. 1994. Preparation and Characterization of Two Distinct Ethylene Glycol Derivates of Kaolinite. Clays and Clay Minerals. 42: 552-560. DOI: https://doi.org/10.1346/CCMN.1994.0420506.
Saikia, B. J., and Parthasarathy, G. 2010. Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. Scientific Research. 1: 206-210. DOI: 10.4236/jmp.2010.14031.
Li, Z., and Gallus, L. 2005. Surface Configuration of Sorbed Hexadecyltrimethylammonium on Kaolinite as Indicated by Surfactant and Counterion Sorption, Cation Desorption, and FTIR. Colloids and Surfaces. 264: 61-67. Doi: https://doi.org/10.1016/j.colsurfa.2005.05.016.
Lee, S. Y., and Kim, S. J. 2002. Adsorption of Naphthalene by HDTMA Modified Kaolinite and Halloysite. Applied Clay Science. 22: 55-63. DOI: https://doi.org/10.1016/S0169-1317(02)00113-8.
Xi, Y., Mallavarapu, M., and Naidu, R. 2010. Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption. Applied Clay Science. 48: 92-96. DOI: https://doi.org/10.1016/j.clay.2009.11.047.
Mi-Na, Z. Xue-Pin, L., and Bi, S. 2006. Adsorption of Surfactants on Chromium Leather Waste. Journal-Society of Leather Technologists and Chemists. 90: 1-6.
Li, Z., and Gallus, L. 2007. Adsorption of Dodecyl Trimethylammonium and Hexadecyl Trimethylammonium onto Kaolinite — Competitive Adsorption and Chain Length Effect. Applied Clay Science. 35: 250-257. DOI: https://doi.org/10.1016/j.clay.2006.09.004.
Xiao, Z. P., Hu, Y. H., Liu, R. Q. 2008. Hydrophobic Aggregation of Ultrafine Kaolinite. Journal Central South University Technology. 15: 368-372. DOI: https://doi.org/10.1007/s11771-008-0069-9.
Comas-Rojas, H., EnrÃquez-Victorero, C., Roser, S. J., Edler, K. J., and Pérez-Gramatges, A. 2013. Self-Assembly and Phase Behaviour of PEI: Cationic Surfactant Aqueous Mixtures Forming Mesostructured Films at The Air/Solution Interface. Soft Matter. 9: 4003-401. DOI: https://doi.org/10.1039/C3SM27541H.
Kamaru, A. A., Sani, N. A., and Malek, N. A. N. N. 2015. Raw and Surfactant-modified Pineapple Leaf as Adsorbent for Removal of Methylene Blue and Methyl Orange from Aqueous Solution. Desalination and Water Treatment. 1-15: 18836-18850. DOI: https://doi.org/10.1080/19443994.2015.1095122.
Ahmed, S. A. A. 2009. Removal of Toxic Pollutants from Aqueous Solutions by Adsorption onto Organo-Kaolin. Carbon Letters. 10: 305-313. DOI: https://doi.org/10.5714/CL.2009.10.4.305.
Parolo, M. E., Fernández, L. G., Zajonkovsky, I., Sánchez, M. P., and Baschini, M. 2011. Antibacterial Activity of Materials Synthesized from Clay Minerals. SciEnce against Microbial Pathogens: Communicating Current Research and Technological Advances, 1, Formatex. 2011: 144-151
Tamboli, D. P. and Lee, D. S. 2013. Mechanistic Antimicrobial Approach of Extracellularly Synthesized Silver Nanoparticles against Gram Positive and Gram Negative Bacteria. Journal of Hazardous Materials. 260, 878-884. DOI: https://doi.org/10.1016/j.jhazmat.2013.06.003.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.