ENTRAPMENT OF FREE CELLS WITHIN ELECTROSPUN NANOFIBERS: MINI REVIEW ON PARAMETERS INFLUENCING NANOFIBERS CHARACTERISTICS AND CELLS VIABILITY
DOI:
https://doi.org/10.11113/jurnalteknologi.v82.14929Keywords:
Entrapment, immobilization, electrospinning, nanofibers, viabilityAbstract
Nanotechnology is a growing technology that has been recognized as vital and scientific with bioprocess development especially in dealing with usage of free cells. Limitations such as low bioavailability, storage instability and low substrate inhibition bound the application of free cells in various field thus leading researchers into focusing more on free cells immobilization system. With the increasing knowledge in nanomaterials fabrication techniques, the immobilization of free cells through entrapment approach in highly porous and the high surface area of nanofibers is becoming an interesting subject to be highlighted. The production of free cells entrapped in nanofibers via electrospinning in terms of quality and quantity is highly affected by the electrospinning operating parameters including solution formulation, ambient conditions, operating conditions of electrospinning machine and types of materials used. Hence, this review paper will provide an overview of the operating conditions involved in electrospinning of cells through entrapment process which affect the characteristics of the electrospun nanofibers produced and the viability or growth of cells when entrapped in the electrospun nanofibers mats.
References
[1] Ang, H.Y., S. Alexander Irvine, R. Avrahami, U. Sarig and T. Bronshtein. 2014. Characterization of a bioactive fiber scaffold with entrapped HUVECs in coaxial electrospun core-shell fiber. 4(1): 1-7
DOI: https://doi.org/10.4161/biom.28238
[2] Wen, P., M.H. Zong, R.J. Linhardt, K. Feng and H. Wu. 2017. Electrospinning: A novel nano-encapsulation approach for bioactive compunds. 70: 56-68
DOI: https://doi.org/10.1016/j.tifs.2017.10.009
[3] Barrow, P.A., and S. James. 1997. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. 5(7): 268-271
DOI: https://doi.org/10.1016/S0966-842X(97)01054-8
[4] Le, T.T.A., J. McEvoy and E. Khan. 2015. The effect of single-walled carbon nanotubes on Escheria coli: multiple indicators of viability . 17(32): 1-9
DOI: DOI: 10.1007/s11051-014-2827-y
[5] Nedovic, V., A. Kalusevic, V. Manojlovic, S. Levic and B. Bugarski. 2011. An overview of encapsulation technologies for food applications. 1: 1806-1815
DOI: https://doi.org/10.1016/j.profoo.2011.09.265
[6] Ray, S., U. Raychaudhuri and R. Chakraborty. 2016. An overview of encapsulation of active compounds used in food products by drying technology. 13: 76-83.
DOI: https://doi.org/10.1016/j.fbio.2015.12.009
[7] Sanguansri, P., and M.A. Augustin. 2006. Nanoscale materials development – a food industry perspective. 17(10): 547-556.
DOI: https://doi.org/10.1016/j.tifs.2006.04.010
[8] Gouin, S. 2004. Microencapsulation: industrial appraisal of existing technologies and trends. 15(7-8): 330-347.
DOI: https://doi.org/10.1016/j.tifs.2003.10.005
[9] Zussman, E. 2010. Encapsulation of cells within electrospun fibers. 22(3): 366-371.
DOI: https://doi.org/10.1002/pat.1812
[10] Vajdai, A., B. Szabo, K. Suvegh, R. Zelko and G. Ujhelyi. 2012. Tracking of the viability of Stenotrophomonas maltophilia bacteria population in polyvinylalcohol nanofiber webs by positron annihilation lifetime spectroscopy. 429(1-2): 135-137.
DOI: https://doi.org/10.1016/j.ijpharm.2012.03.018
[11] Leung, V., and F. Ko. 2010. Biomedical applications of nanofibers. 22(3): 350-365.
DOI: https://doi.org/10.1002/pat.1813
[12] Spasova, M., N. Manalova, M. Naydenov, J. Kuzmanova and I. Rashkov. 2010. Electrospun biohybrid materials for plat biocontrol containing chitosan and Trichoderma viride spores. 26(1): 48-55
DOI: https://doi.org/10.1177%2F0883911510391446
[13] Biazar, E. 2016. Application of polymeric nanofibers in soft tissues regeneration. 27(11): 1401-1540
DOI: https://doi.org/10.1002/pat.3820
[14] Thenmozhi, S., N. Dharmaraj, K. Kadirvelu and K. Hak Yong. 2017. Electrospun nanofibers: New generation materials for advanced applications. 217: 36-48.
DOI: http://dx.doi.org/10.1016%2Fj.mseb.2017.01.001
[15] Bhardwaj, N., and S. C. Kundu. 2010. Electrospinning: A fascinating fiber fabrication technique. 28(3): 325-347.
DOI: https://doi.org/10.1016/j.biotechadv.2010.01.004
[16] Rodoplu, D and M. Mutlu. 2012. Effects of Electrospinning Setup and Process Parameters on Nanofibers Morphology Intended for the modification of Quartz Crystal Microbalance Surfaces. 7(2): 118-123.
DOI: https://doi.org/10.1177%2F155892501200700217
[17] Datta, S., L. Rene Christena and Y. Rani Sriramulu Rajaram. 2012. Enzyme immobilization: an overview on techniques and support materials. 3(1): 1-9.
DOI: https://dx.doi.org/10.1007%2Fs13205-012-0071-7
[18] Lima, J. d., F.N. Costa, M.A. Bastistella, P. Henrique and D. de Oliveira .2019. Functionalized kaolin as support for endoglucanase immobilization. 42(7): 1165-1173.
DOI: https://doi.org/10.1007/s00449-019-02113-w
[19] Abdolmaleki, A. Y., H. Zilouei, S.N. Khorasani and A. Abdolmaleki. 2017. Optimization and characterization of electrospun chitosan/poly (vinyl alcohol) nanofibers as a phenol adsorbent via response surface methodology. 28(12): 1872-1878
DOI: https://doi.org/10.1002/pat.4075
[20] Schaechter, M. 2001. Escherichia coli and Salmonella 2000: the View From Here. 65(1): 119-30.
DOI: https://doi.org/10.1128/MMBR.65.1.119-130.2001
[21] Salalha, W., J Kuhn, Y Dror and E. Zussman. 2006. Encapsulation of bacteria and viruses in electrospun nanofibers.17(18): 4675-4681.
DOI: https://doi.org/10.1088/0957-4484/17/18/025
[22] Chong, E.J., T.T. Phan, I.J. Lim, Y.Z. Zhang and B.H. Bay. 2007. Evaluation of electrospun PCL/gelatin nanofibrous scaffold forwound healing and layered dermal reconstitution. 3(3): 321-330
DOI: https://doi.org/10.1016/j.actbio.2007.01.002
[23] Geng, X., O.H. Kwon and J. Jang. 2005. Electrospinning of chitosan dissolved in concentrated. 26(27): 5427-5432.
DOI: https://doi.org/10.1016/j.biomaterials.2005.01.066
[24] Pham, Q.P., U. Sharma and A.G. Mikos. 2006. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. 12(5): 1197-1211
DOI: https://doi.org/10.1089/ten.2006.12.1197
[25] Baumgarten, P. 1971. Electrostatic Spinning of Acrylic Microfibers . 36(1): 71 79.
DOI: https://doi.org/10.1016/0021-9797(71)90241-4
[26] Stepanyan, R., A. Subbotin, L. Cuperus, P. Boonen and M. Dorschu. 2014.Fiber diameter control in electrospinning. 105(17): 1-5
DOI: http://dx.doi.org/10.1063/1.4900778
[27] Keskin, N.O.S., A. Celebioglu, O.F. Sarioglu, T. Uyar and T. Tekinay. 2018. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. 161: 169-176
DOI: https://doi.org/10.1016/j.colsurfb.2017.10.047
[28] Zhang, Y.Z., J. Venugopal, Z.M. Huang, C.T. Lim and S. Ramakrishna. 2006. Crosslinking of the electrospun gelatin nanofiber. 47: 2911-2917
DOI: https://doi:10.1016/j.polymer.2006.02.046
[29] Lee, S.-W., and A.M. Belcher. 2004. Virus-Based Fabrication of Micro- and Nanofibers Using Electrospinning. 4(3): 387-390.
DOI: https://doi.org/10.1021/nl034911t
[30] Larrondo, L., and R. ST. John Manley. 1981. Electrostatic Fiber Spinning from Polymer Melts. 19(6): 933-940.
DOI: https://doi.org/10.1002/pol.1981.180190603
[31] Megelski, S., J.S. Stephens, D.B. Chase and J.F. Rabolt. 2002. Micro- and Nanostructured Surface Morphology on Electrospun Polymer. 35(22): 8456-8466.
DOI: https://doi.org/10.1021/ma020444a
[32] Luu, Y., K. Kim, B.S. Hsiao, B. Chu and M. Hadjiargyrou. 2003. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. 89(2): 341-353.
DOI: https://doi.org/10.1016/s0168-3659(03)00097-x
[33] Haider, A., S. Haider and I.K. Kang. 2018. A comprehensive review summarizing the effect. 11(8): 1165-1188.
DOI: https://doi.org/10.1016/j.arabjc.2015.11.015
[34] Huang, L., K. Nagapudi, R.P. Apkarian and E.L. Chaikof. 2001). Engineered collagen–PEO nanofibers and fabrics. 12(9): 979-993.
DOI: https://doi.org/10.1163/156856201753252516
[35] Lee, S.-W., and A.M. Belcher. 2004. Virus-Based Fabrication of Micro- and Nanofibers Using Electrospinning. 4(3): 387-390.
DOI: https://doi.org/10.1021/nl034911t
Haghi, A., and M. Akbari. 2007. Trends in electrospinning of natural nanofibers. 204(6): 1830-1834.
DOI: https://doi.org/10.1002/pssa.200675301
Tan, S.-H., R. Inai, M. Kotaki and S. Ramakrishna. 2005. Systematic parameter study for ultra-fine fiber fabrication via Electrospinning Process. 46(16): 6128-6134
DOI: https://doi.org/10.1016/j.polymer.2005.05.068
Gupta, P., C. Elkins, T.E. Long and G.L. Wilkes. 2005. Electrospinning of linear homopolymers of poly(methyl methacrylate).46(13):4799-4810.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.