ISOTHERM, KINETICS AND THERMODYNAMICS ADSORPTION STUDIES OF DYE ONTO Fe3O4-WASTE PAPER ACTIVATED CARBON COMPOSITES

Authors

  • Adel Fisli Center for Science and Technology of Advanced Materials-National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Banten, Indonesia https://orcid.org/0000-0003-4378-4944
  • Rahma Dina Safitri Departement of Chemistry, Faculty of Science and Technology UIN Syarif Hidayatullah Jl. Ir. H. Djuanda no.95, Ciputat Timur, Tangerang Selatan, Banten, Indonesia
  • Nurhasni Departement of Chemistry, Faculty of Science and Technology UIN Syarif Hidayatullah Jl. Ir. H. Djuanda no.95, Ciputat Timur, Tangerang Selatan, Banten, Indonesia
  • Sari Hasnah Dewi Center for Science and Technology of Advanced Materials-National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Banten, Indonesia
  • Deswita Center for Science and Technology of Advanced Materials-National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Banten, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v83.14991

Keywords:

Activated carbon, waste paper, magnetite (Fe3O4), dyes, adsorption

Abstract

This paper focused on the studying of adsorption properties of Fe3O4-waste paper activated carbon composites for the removal of methylene blue dyes from water. The various parameters were carried out for the adsorption test of the composites, namely; contact time, adsorbent dose, initial MB concentration, pH solution, and temperature. The adsorption of isotherm, thermodynamics and kinetic was used to determine the characteristics of methylene blue adsorption onto the prepared adsorbent. The result indicates that the optimum adsorption capacity has occurred at pH = 6 in water solution. The adsorption capacity increase as the temperature increase until at 315K (45oC). The Langmuir isotherm is more appropriate to be applied as the adsorption model with the maximum adsorption capacity (qm) value of 101 and 93 mg/g for KA HCl-Fe3O4 and KA-Fe3O4 composites, respectively. The value of adsorption thermodynamic parameters was positive for ΔH, negative for ΔGo and positive for ΔSo, meaning the process adsorptions were endothermic, feasibility and spontaneity and randomness, respectively. The pseudo-second-order model was appropriate to predict the kinetic models for methylene blue adsorption onto the composites. The obtained adsorbent composites possess high adsorption efficiency and rapid magnetic separation. They were a promising for practical wastewater treatment for dyes removal from water.

References

Hejazifar, M. & Azizian, S. 2012, Adsorption of Cationic and Anionic Dyes onto the Activated Carbon Prepared from Grapevine Rhytidome. Journal of Dispersion Science. Technology. 33: 846–853.

DOI: 10.1080/01932691.2011. 57986

Adegoke, K. A. & Bello, O. S. 2015. Dye Sequestration using Agricultural Wastes as Adsorbents. Water Resources Industry. 12: 8–24. DOI: http://dx.doi.org/10.1016/j.wri.2015.09.002

Banat, I. M., Nigam, P., Singh, D. & Marchant, R. 1996. Microbial decolorization of textile-dye-containing effluents: A Review. Bioresource Technology. 58: 217–227. DOI: 10.1016/S0960-8524(96)00113-7

Sivashankar, R., Sathya, A. B., Vasantharaj, K. & Sivasubramanian, V. 2014. Magnetic composite an environmental super adsorbent for dye sequestration – A review. Environmental nanotechnology, Monitoring &Management 1–2: 36–49. DOI: 10.1016/j.enmm.2014.06.001

Baghapour, M. A., Djahed, B. & Ranjbar, M. 2013. Removal of Methylene Blue from Aqueous Solutions by Waste Paper Derived Activated Carbon. Journal of Health Science & Surveillance System. 1: 48–56. http://jhsss.sums.ac.ir/article_42736.html

Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. 2010. Adsorption of methylene blue on low-cost adsorbents. A review. Journal of Hazardous Materials 177: 70–80. DOI: 10.1016/j.jhazmat.2009.12.047

Yusuff, A. S. 2019. Adsorption of cationic dye from aqueous solution using composite chicken eggshell - Anthill clay: Optimization of adsorbent preparation conditions. Acta Polytechnica 59: 192–202.

DOI: https://doi.org/10.14311/AP.2019.59.0192

Eslami, H., Khavidak, S. S., Salehi, F., Khosravi, R., Fallahzadeh, R. A., Peirovi, R. & Sadeghi, S. 2017. Biodegradation of methylene blue from aqueous solution by bacteria isolated from contaminated soil. Journal Advances Environmental Health Research. 5: 10–15. DOI: 10.22102/JAEHR.2017.46690

Wardhani, S., Rahman, M. F., Purwonugroho, D. & Tjahjanto, R. T. 2016. Photocatalytic Degradation of Methylene Blue Using TiO2-Natural Zeolite as A Photocatalyst. The Journal of Pure and Applied Chemistry Research. 5: 19–26.

DOI: 10.21776/ub.jpacr.2016.005.01.232

Dutta, K., Mukhopadhyay, S., Bhattacharjee, S. & Chaudhuri, B. 2001. Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materilas. 84 (1): 57–71.

DOI: 10.1016/S0304-3894(01)00202-3

Asghar, H. M. A., Ahmad, T., Hussain, S. N. & Sattar, H. 2015. Electrochemical Oxidation of Methylene Blue in Aqueous Solution. International Journal of Chemical Engineering and Applications. 6(5): 352–355. DOI: 10.7763/IJCEA.2015.V6.508

Kusumastuti, A., Ahmad, A.L., Syawil, R., & Anis, S. 2018, Enhancing textile dye removal in emulsion liquid membrane system using Taylor Couette column. Jurnal Teknologi (Sciences & Engineering) 80(3): 69–76.

Link:https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/10717.

Hu, N., Liu, W., Ding, L., Wu, Z., Yin, H., Huang, D., Li, H., Jin, L., Zheng H. 2017. Removal of methylene blue from its aqueous solution by froth flotation: hydrophobic silica nanoparticle as a collector. Journal of Nanoparticle Res. 19: 46. DOI:10.1007/s11051-017-3762-5.

Mahmoud, M. S., Farah, J. Y. & Farrag, T. E. 2013. Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes. Egypt Journal of Petroleum. 22: 211–216.

DOI: https://doi.org/10.1016/j.ejpe.2012.09.013

Mohammed, M. A., Shitu, A. & Ibrahim, A. 2014. Removal of methylene blue using low cost adsorbent : a review Removal of Methylene Blue Using Low Cost Adsorbent : A Review. Research Journal of Chemical Science. 4(1): 91–102.

Link:http://www.isca.in/rjcs/Archives/v4/i1/15.ISCA-RJCS-2013-178.php

Lamine, S. M., Ridha, C., Mahfound, H.-M., Moud, C., Lotfi, B., Al-Dujaili, A. H. 2014. Chemical activation of an activated carbon prepared from coffee residue. Energy Procedia 50: 393–400. DOI: 10.1016/j.egypro.2014.06.047

Yusuff, A. S. 2019. Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: equilibrium, kinetic and thermodynamic studies. Arab Journal of Basic and Applied Science. 26: 89–102.

DOI:https://doi.org/10.1080/25765299.2019.1567656

Yilmaz, M and Gumuskaya, T. 2015. Recycling Costs: A Research in the Waste Paper Industry. European Journal of Accounting Auditing and Finanace Reseach. 3 (4): 58–68.

Link:http://www.eajournals.org/wp-content/uploads/Recycling-Costs-A-Research-in-the-Waste-Paper-Industry.pdf

Wu, C., Chang, C., Tseng, C.-H. & Lin, J.-P. 2003. Pyrolysis product distribution of waste newspaper in MSW. Journal of Analytical and . Applied Pyrolysis. 67(1): 41–53.

DOI: https://doi.org/10.1016/S0165-2370(02)00016-5

Kardono. 2017. Integrated Solid Waste Management in Indonesia. in Proceeding of International Symposium on Eco Topia Science. Link:https://id.scribd.com/document/316722738/

Pivnenko, K., Eriksson, E. & Astrup, T. F. 2015. Waste paper for recycling: Overview and identification of potentially critical substances. Waste Managgement. 45: 134–142.

DOI:https://doi.org/10.1016/j.wasman.2015.02.028

Okada, K., Yamamoto, N., Kameshima, Y. & Yasumori, A. 2003. Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation. Journal of Colloid Interface Science. 262: 194–199. DOI:10.1016/S0021-9797(03)00108-5

Shimada, M., Hamabe, H., Iida, T., Kawarda, K. & Okayama, T. 1999. The Properties of Activated Carbon Made from Waste Newsprint Paper. Journal of Porous Materials. 6: 191–196.

DOI: https://doi.org/10.1023/A:1009671711925

Zhang, Z., Li, J., Sun, F., Ng, D. H. L., Kwong, F. & Liu, S. 2011. Preparation and Characterization of Activated Carbon Fiber from Paper. 24(1), 103–108. DOI :10.1088/ 1674-0068/ 24/ 01/ 103-108

Mohammed, A. A., Brouers, F., Isra’a Sadi, S. & Al-Musawi, T. J. 2018. Role of Fe3O4 magnetite nanoparticles used to coat bentonite in zinc(II) ions sequestration. Environmental Nanotechnology, Monitoring and Management. 10: 17–27.

DOI: https://doi.org/10.1016/j.enmm.2018.04.004

Fisli, A., Yusuf, S., Ridwan, Krisnandi, Y. K. & Gunlazuardi, J. 2014. Preparation and Characterization of Magnetite-Silica Nano-Composite as Adsorbents for Removal of Methylene Blue Dyes from Environmental Water Samples. Advaced Materials Research. 896: 525–531. DOI: 10.4028/www.scientific.net/AMR.896.525

Fisli, A., Winatapura, D. S. & Alfian. 2018. The surface Functionalization of Fe3O4 nanoparticles by CTAB as adsorbent for methyl orange elimination in water. IOP Conference Series: Journal of Physics: Conference Series 1091.

DOI :10.1088/1742-6596/1091/1/012002

Iskandar, F., Fitriani, P., Merissa, S., Mukti, R. R., Khairurrijal & Abdullah, M. 2014, Fe3O4/Zeolite nanocomposites synthesized by microwave assisted coprecipitationand its performance in reducing viscosity of heavy oil. AIP Conference Proceedings 1586, 132.

DOI: http://dx.doi.org/10.1063/1.4866746

Vun, C. H., Mohammad, A. B., Haan, Teow Yeit, Mahmoudi, E. 2017. Evaluation of iron oxide decorated on graphene oxide (Fe3O4/GO) nanohybrid incorporated in PSF membrane at different molar ratios for congo red rejection. Jurnal Teknologi (Sciences & Engineering). 79(1–2): 73–81.

Link:https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/10440/6099

Zulfikar, M. A., Afrita, S., Wahyuningrum, D. & Ledyastuti, M. 2016. Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption. Environmental Nanotechnology, Monitoring & Management 6: 64–75.

DOI: https://doi.org/10.1016/j.enmm.2016.06.001

Yegane Badi, M., Azari, A., Pasalari, H., Esrafili, A. & Farzadkia, M. 2018. Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. Journal of Molecular Liquids. 261: 146–154.

DOI: https://doi.org/10.1016/j.molliq.2018.04.019

Song, X. Liu, J., Jiang, Q., Zhang, P., Shao, Y., He, W. & Feng, Y. 2019. Enhanced electron transfer and methane production from low-strength wastewater using a new granular activated carbon modified with nano-Fe3O4. Chemical Engineering Journal. 374: 1344–1352.

DOI: https://doi.org/10.1016/j.cej.2019.05.216

Liu, X., Tian, J., Li, Yu., Sun. N., Mi, S., Xie, Yong, Chen, Z. 2019. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. Journal of Hazardous Materials. 373: 397–407.

DOI: 10.1016/j.jhazmat.2019.03.103

Fisli, A., Safitri, R. D., Nurhasni & Deswita. 2018. Analisis Struktur dan Porositas Komposit Fe3O4-Karbon Aktif dari Limbah Kertas sebagai Adsorben Magnetik. J. Sains Mater. Indones. 19: 179–187.

DOI:https://doi.org/10.17146/jsmi.2018.19.4.4886

Xu, P., Zeng, G.M., Huang, D. L., Feng, C. L., Hu, S., Zhao, C. L., Wei, Z., Huang, C., Xie, G. Xi., Liu, Z. F. 2012. Use of iron oxide nanomaterials in wastewater treatment: A review. Science Total Environment. 424: 1–10. DOI: 10.1016/j.scitotenv.2012.02.023

Acevedo, B. & Barriocanal, C. 2015. Texture and surface chemistry of activated carbons obtained from tyre wastes. Fuel Processing Technology. 134: 275–283.

DOI: 10.1016/j.fuproc.2015.02.009

Ramakrishnan, K. & Namasivayam, C. 2009. Development and Characterstics of Activated Carbons From Jatropha Husk , an Agro Industrial Solid Waste , By Chemical Activation Methods. J. Environment Engineering Management. 19: 173–178.

Gecgel, U., Ozcan, G. & Gurpinar, G. C. 2013. Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells (Pisum sativum). Journal of Chemistry. 2013. Article ID 614083. DOI: http://dx.doi.org/10.1155/2013/614083

Weber, T. W. & Chakravorti, R. K. 1974. Pore and Solid Diffusion Models for Fixed Bed Adsorbents. AIChE Journal. 20: 228–238. DOI:10.1002/aic.690200204

Kakavandi, B. et al. 2013. Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iranian Journal of Environmental Health Science & Engineering. 10: 19. Link. http://www.ijehse.com/content/10/1/19

Ai, L., Zhou, Y. & Jiang, J. 2011. Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266: 72–77.

DOI: 10.1016/j.desal.2010.08.004

Karaer. H. & Kaya, I. 2016, Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous and Mesoporous Materials. 232: 26-38. DOI: 10.1016/j.micromeso.2016.06.006

Chang, J. Ma, J., Ma, Q., Zhang, D., Qiao, N., Hu, M., Ma, H. 2016. Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Applied Clay Science. 119: 132–140. DOI: 0.1016/j.clay.2015.06.038

Li, Y., Zhou, Y., Nie, W., Song, L. & Chen, P. 2015. Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles. Journal of Porous Materials. 22: 1383–1392. DOI: 10.1007/s10934-015-0017-7

Li, L., Duan, H., Wang, X. & Luo, C. 2015. Fabrication of novel magnetic nanocomposite with a number of adsorption sites for the removal of dye. International Journal of Biological Macromolecules. 78: 17–22. DOI: 10.1016/j.ijbiomac.2015.01.014

Alzahrani, E. 2014. Gum Arabic-Coated Magnetic Nanoparticles For Methylene Blue Removal. International Journal of Innovative Research in Science, Engineering and Technology 3: 15118–15129.

DOI: 10.15680/IJIRSET.2014.0308009

Downloads

Published

2020-12-07

Issue

Section

Science and Engineering

How to Cite

ISOTHERM, KINETICS AND THERMODYNAMICS ADSORPTION STUDIES OF DYE ONTO Fe3O4-WASTE PAPER ACTIVATED CARBON COMPOSITES. (2020). Jurnal Teknologi (Sciences & Engineering), 83(1), 45-55. https://doi.org/10.11113/jurnalteknologi.v83.14991