ISOTHERM, KINETICS AND THERMODYNAMICS ADSORPTION STUDIES OF DYE ONTO Fe3O4-WASTE PAPER ACTIVATED CARBON COMPOSITES
DOI:
https://doi.org/10.11113/jurnalteknologi.v83.14991Keywords:
Activated carbon, waste paper, magnetite (Fe3O4), dyes, adsorptionAbstract
This paper focused on the studying of adsorption properties of Fe3O4-waste paper activated carbon composites for the removal of methylene blue dyes from water. The various parameters were carried out for the adsorption test of the composites, namely; contact time, adsorbent dose, initial MB concentration, pH solution, and temperature. The adsorption of isotherm, thermodynamics and kinetic was used to determine the characteristics of methylene blue adsorption onto the prepared adsorbent. The result indicates that the optimum adsorption capacity has occurred at pH = 6 in water solution. The adsorption capacity increase as the temperature increase until at 315K (45oC). The Langmuir isotherm is more appropriate to be applied as the adsorption model with the maximum adsorption capacity (qm) value of 101 and 93 mg/g for KA HCl-Fe3O4 and KA-Fe3O4 composites, respectively. The value of adsorption thermodynamic parameters was positive for ΔH, negative for ΔGo and positive for ΔSo, meaning the process adsorptions were endothermic, feasibility and spontaneity and randomness, respectively. The pseudo-second-order model was appropriate to predict the kinetic models for methylene blue adsorption onto the composites. The obtained adsorbent composites possess high adsorption efficiency and rapid magnetic separation. They were a promising for practical wastewater treatment for dyes removal from water.
References
Hejazifar, M. & Azizian, S. 2012, Adsorption of Cationic and Anionic Dyes onto the Activated Carbon Prepared from Grapevine Rhytidome. Journal of Dispersion Science. Technology. 33: 846–853.
DOI: 10.1080/01932691.2011. 57986
Adegoke, K. A. & Bello, O. S. 2015. Dye Sequestration using Agricultural Wastes as Adsorbents. Water Resources Industry. 12: 8–24. DOI: http://dx.doi.org/10.1016/j.wri.2015.09.002
Banat, I. M., Nigam, P., Singh, D. & Marchant, R. 1996. Microbial decolorization of textile-dye-containing effluents: A Review. Bioresource Technology. 58: 217–227. DOI: 10.1016/S0960-8524(96)00113-7
Sivashankar, R., Sathya, A. B., Vasantharaj, K. & Sivasubramanian, V. 2014. Magnetic composite an environmental super adsorbent for dye sequestration – A review. Environmental nanotechnology, Monitoring &Management 1–2: 36–49. DOI: 10.1016/j.enmm.2014.06.001
Baghapour, M. A., Djahed, B. & Ranjbar, M. 2013. Removal of Methylene Blue from Aqueous Solutions by Waste Paper Derived Activated Carbon. Journal of Health Science & Surveillance System. 1: 48–56. http://jhsss.sums.ac.ir/article_42736.html
Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. 2010. Adsorption of methylene blue on low-cost adsorbents. A review. Journal of Hazardous Materials 177: 70–80. DOI: 10.1016/j.jhazmat.2009.12.047
Yusuff, A. S. 2019. Adsorption of cationic dye from aqueous solution using composite chicken eggshell - Anthill clay: Optimization of adsorbent preparation conditions. Acta Polytechnica 59: 192–202.
DOI: https://doi.org/10.14311/AP.2019.59.0192
Eslami, H., Khavidak, S. S., Salehi, F., Khosravi, R., Fallahzadeh, R. A., Peirovi, R. & Sadeghi, S. 2017. Biodegradation of methylene blue from aqueous solution by bacteria isolated from contaminated soil. Journal Advances Environmental Health Research. 5: 10–15. DOI: 10.22102/JAEHR.2017.46690
Wardhani, S., Rahman, M. F., Purwonugroho, D. & Tjahjanto, R. T. 2016. Photocatalytic Degradation of Methylene Blue Using TiO2-Natural Zeolite as A Photocatalyst. The Journal of Pure and Applied Chemistry Research. 5: 19–26.
DOI: 10.21776/ub.jpacr.2016.005.01.232
Dutta, K., Mukhopadhyay, S., Bhattacharjee, S. & Chaudhuri, B. 2001. Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materilas. 84 (1): 57–71.
DOI: 10.1016/S0304-3894(01)00202-3
Asghar, H. M. A., Ahmad, T., Hussain, S. N. & Sattar, H. 2015. Electrochemical Oxidation of Methylene Blue in Aqueous Solution. International Journal of Chemical Engineering and Applications. 6(5): 352–355. DOI: 10.7763/IJCEA.2015.V6.508
Kusumastuti, A., Ahmad, A.L., Syawil, R., & Anis, S. 2018, Enhancing textile dye removal in emulsion liquid membrane system using Taylor Couette column. Jurnal Teknologi (Sciences & Engineering) 80(3): 69–76.
Link:https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/10717.
Hu, N., Liu, W., Ding, L., Wu, Z., Yin, H., Huang, D., Li, H., Jin, L., Zheng H. 2017. Removal of methylene blue from its aqueous solution by froth flotation: hydrophobic silica nanoparticle as a collector. Journal of Nanoparticle Res. 19: 46. DOI:10.1007/s11051-017-3762-5.
Mahmoud, M. S., Farah, J. Y. & Farrag, T. E. 2013. Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes. Egypt Journal of Petroleum. 22: 211–216.
DOI: https://doi.org/10.1016/j.ejpe.2012.09.013
Mohammed, M. A., Shitu, A. & Ibrahim, A. 2014. Removal of methylene blue using low cost adsorbent : a review Removal of Methylene Blue Using Low Cost Adsorbent : A Review. Research Journal of Chemical Science. 4(1): 91–102.
Link:http://www.isca.in/rjcs/Archives/v4/i1/15.ISCA-RJCS-2013-178.php
Lamine, S. M., Ridha, C., Mahfound, H.-M., Moud, C., Lotfi, B., Al-Dujaili, A. H. 2014. Chemical activation of an activated carbon prepared from coffee residue. Energy Procedia 50: 393–400. DOI: 10.1016/j.egypro.2014.06.047
Yusuff, A. S. 2019. Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: equilibrium, kinetic and thermodynamic studies. Arab Journal of Basic and Applied Science. 26: 89–102.
DOI:https://doi.org/10.1080/25765299.2019.1567656
Yilmaz, M and Gumuskaya, T. 2015. Recycling Costs: A Research in the Waste Paper Industry. European Journal of Accounting Auditing and Finanace Reseach. 3 (4): 58–68.
Wu, C., Chang, C., Tseng, C.-H. & Lin, J.-P. 2003. Pyrolysis product distribution of waste newspaper in MSW. Journal of Analytical and . Applied Pyrolysis. 67(1): 41–53.
DOI: https://doi.org/10.1016/S0165-2370(02)00016-5
Kardono. 2017. Integrated Solid Waste Management in Indonesia. in Proceeding of International Symposium on Eco Topia Science. Link:https://id.scribd.com/document/316722738/
Pivnenko, K., Eriksson, E. & Astrup, T. F. 2015. Waste paper for recycling: Overview and identification of potentially critical substances. Waste Managgement. 45: 134–142.
DOI:https://doi.org/10.1016/j.wasman.2015.02.028
Okada, K., Yamamoto, N., Kameshima, Y. & Yasumori, A. 2003. Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation. Journal of Colloid Interface Science. 262: 194–199. DOI:10.1016/S0021-9797(03)00108-5
Shimada, M., Hamabe, H., Iida, T., Kawarda, K. & Okayama, T. 1999. The Properties of Activated Carbon Made from Waste Newsprint Paper. Journal of Porous Materials. 6: 191–196.
DOI: https://doi.org/10.1023/A:1009671711925
Zhang, Z., Li, J., Sun, F., Ng, D. H. L., Kwong, F. & Liu, S. 2011. Preparation and Characterization of Activated Carbon Fiber from Paper. 24(1), 103–108. DOI :10.1088/ 1674-0068/ 24/ 01/ 103-108
Mohammed, A. A., Brouers, F., Isra’a Sadi, S. & Al-Musawi, T. J. 2018. Role of Fe3O4 magnetite nanoparticles used to coat bentonite in zinc(II) ions sequestration. Environmental Nanotechnology, Monitoring and Management. 10: 17–27.
DOI: https://doi.org/10.1016/j.enmm.2018.04.004
Fisli, A., Yusuf, S., Ridwan, Krisnandi, Y. K. & Gunlazuardi, J. 2014. Preparation and Characterization of Magnetite-Silica Nano-Composite as Adsorbents for Removal of Methylene Blue Dyes from Environmental Water Samples. Advaced Materials Research. 896: 525–531. DOI: 10.4028/www.scientific.net/AMR.896.525
Fisli, A., Winatapura, D. S. & Alfian. 2018. The surface Functionalization of Fe3O4 nanoparticles by CTAB as adsorbent for methyl orange elimination in water. IOP Conference Series: Journal of Physics: Conference Series 1091.
DOI :10.1088/1742-6596/1091/1/012002
Iskandar, F., Fitriani, P., Merissa, S., Mukti, R. R., Khairurrijal & Abdullah, M. 2014, Fe3O4/Zeolite nanocomposites synthesized by microwave assisted coprecipitationand its performance in reducing viscosity of heavy oil. AIP Conference Proceedings 1586, 132.
DOI: http://dx.doi.org/10.1063/1.4866746
Vun, C. H., Mohammad, A. B., Haan, Teow Yeit, Mahmoudi, E. 2017. Evaluation of iron oxide decorated on graphene oxide (Fe3O4/GO) nanohybrid incorporated in PSF membrane at different molar ratios for congo red rejection. Jurnal Teknologi (Sciences & Engineering). 79(1–2): 73–81.
Link:https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/10440/6099
Zulfikar, M. A., Afrita, S., Wahyuningrum, D. & Ledyastuti, M. 2016. Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption. Environmental Nanotechnology, Monitoring & Management 6: 64–75.
DOI: https://doi.org/10.1016/j.enmm.2016.06.001
Yegane Badi, M., Azari, A., Pasalari, H., Esrafili, A. & Farzadkia, M. 2018. Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. Journal of Molecular Liquids. 261: 146–154.
DOI: https://doi.org/10.1016/j.molliq.2018.04.019
Song, X. Liu, J., Jiang, Q., Zhang, P., Shao, Y., He, W. & Feng, Y. 2019. Enhanced electron transfer and methane production from low-strength wastewater using a new granular activated carbon modified with nano-Fe3O4. Chemical Engineering Journal. 374: 1344–1352.
DOI: https://doi.org/10.1016/j.cej.2019.05.216
Liu, X., Tian, J., Li, Yu., Sun. N., Mi, S., Xie, Yong, Chen, Z. 2019. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. Journal of Hazardous Materials. 373: 397–407.
DOI: 10.1016/j.jhazmat.2019.03.103
Fisli, A., Safitri, R. D., Nurhasni & Deswita. 2018. Analisis Struktur dan Porositas Komposit Fe3O4-Karbon Aktif dari Limbah Kertas sebagai Adsorben Magnetik. J. Sains Mater. Indones. 19: 179–187.
DOI:https://doi.org/10.17146/jsmi.2018.19.4.4886
Xu, P., Zeng, G.M., Huang, D. L., Feng, C. L., Hu, S., Zhao, C. L., Wei, Z., Huang, C., Xie, G. Xi., Liu, Z. F. 2012. Use of iron oxide nanomaterials in wastewater treatment: A review. Science Total Environment. 424: 1–10. DOI: 10.1016/j.scitotenv.2012.02.023
Acevedo, B. & Barriocanal, C. 2015. Texture and surface chemistry of activated carbons obtained from tyre wastes. Fuel Processing Technology. 134: 275–283.
DOI: 10.1016/j.fuproc.2015.02.009
Ramakrishnan, K. & Namasivayam, C. 2009. Development and Characterstics of Activated Carbons From Jatropha Husk , an Agro Industrial Solid Waste , By Chemical Activation Methods. J. Environment Engineering Management. 19: 173–178.
Gecgel, U., Ozcan, G. & Gurpinar, G. C. 2013. Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells (Pisum sativum). Journal of Chemistry. 2013. Article ID 614083. DOI: http://dx.doi.org/10.1155/2013/614083
Weber, T. W. & Chakravorti, R. K. 1974. Pore and Solid Diffusion Models for Fixed Bed Adsorbents. AIChE Journal. 20: 228–238. DOI:10.1002/aic.690200204
Kakavandi, B. et al. 2013. Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iranian Journal of Environmental Health Science & Engineering. 10: 19. Link. http://www.ijehse.com/content/10/1/19
Ai, L., Zhou, Y. & Jiang, J. 2011. Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266: 72–77.
DOI: 10.1016/j.desal.2010.08.004
Karaer. H. & Kaya, I. 2016, Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous and Mesoporous Materials. 232: 26-38. DOI: 10.1016/j.micromeso.2016.06.006
Chang, J. Ma, J., Ma, Q., Zhang, D., Qiao, N., Hu, M., Ma, H. 2016. Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Applied Clay Science. 119: 132–140. DOI: 0.1016/j.clay.2015.06.038
Li, Y., Zhou, Y., Nie, W., Song, L. & Chen, P. 2015. Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles. Journal of Porous Materials. 22: 1383–1392. DOI: 10.1007/s10934-015-0017-7
Li, L., Duan, H., Wang, X. & Luo, C. 2015. Fabrication of novel magnetic nanocomposite with a number of adsorption sites for the removal of dye. International Journal of Biological Macromolecules. 78: 17–22. DOI: 10.1016/j.ijbiomac.2015.01.014
Alzahrani, E. 2014. Gum Arabic-Coated Magnetic Nanoparticles For Methylene Blue Removal. International Journal of Innovative Research in Science, Engineering and Technology 3: 15118–15129.
DOI: 10.15680/IJIRSET.2014.0308009
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.