PRODUCTION OF LIPID AND CARBOHYDRATE IN Tetradesmus obliquus UPSI-JRM02 UNDER NITROGEN STRESS CONDITION
DOI:
https://doi.org/10.11113/jurnalteknologi.v83.15012Keywords:
Nitrogen stress, Tetradesmus obliquus, lipid, carbohydrate, biofuelAbstract
Nitrogen stress condition is believed to increase the production of lipid in microalgae, but the synthesis of both lipid and carbohydrate is less known. Therefore, the effect of nitrogen stress condition on the synthesis of lipid and carbohydrate of Tetradesmus obliquus UPSI-JRM02 was studied in a 2 L bioreactor system. The highest lipid and carbohydrate yields achieved under nitrogen stress condition were 37% and 23%, respectively. Nitrogen stress condition induced the accumulation of carbohydrate at early stage but started to reduce on day 4 when the carbon shifted towards lipid production. The fatty acid profile produced under nitrogen stress condition was composed of 54% polyunsaturated fatty acid (PUFA), 43% saturated fatty acid (SFA) and 3% monounsaturated fatty acid (MUFA). The biofuel properties of T. obliquus obtained under the nitrogen stress condition was within the range of biodiesel standard and is most suitable for the usage in cold country.
References
Suparmaniam, U., Lam, M. K., Uemura, Y., Lim, J. W., Lee, K. T., & Shuit, S. H. 2019. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable and Sustainable Energy Reviews, 115(January), 109361. doi: 10.1016/j.rser.2019.109361
Author. (2017).
Chu, W. (2017). Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European Journal Of Phycology, 52(4), 419-437.
Breuer, G., Lamers, P., Martens, D., Draaisma, R., & Wijffels, R. (2013). Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology, 143, 1-9.
Stephenson, A., Dennis, J., Howe, C., Scott, S., & Smith, A. (2010). Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels, 1(1), 47-58.
Chellamboli, C., & Perumalsamy, M. (2014). Application of response surface methodology for optimization of growth and lipids in Scenedesmus abundans using batch culture system. RSC Adv., 4(42), 22129-22140.
Martin, G. J. O., Hill, D. R. A., Olmstead, I. L. D., Bergamin, A., Shears, M. J., Dias, D. A., & Callahan, D. L. (2014). Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS ONE, 9(8). doi: 10.1371/journal.pone.0103389
Yang, F., Long, L., Sun, X., Wu, H., Li, T., & Xiang, W. (2014). Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Marine Drugs, 12(3), 1245-1257.
Markou, G., Angelidaki, I., Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645.
Fulbright, S. P., Robbins-Pianka, A., Berg-Lyons, D., Knight, R., Reardon, K. F., & Chisholm, S. T. (2018). Bacterial community changes in an industrial algae production system. Algal Research, 31, 147–156. doi: 10.1016/j.algal.2017.09.010
Parsa, M., Jalilzadeh, H., Pazoki, M., Ghasemzadeh, R., & Abduli, M. A. (2018). Hydrothermal liquefaction of Gracilaria gracilis and Cladophora glomerata macro-algae for biocrude production. Bioresource Technology, 250, 26–34. doi: 10.1016/j.biortech.2017.10.059
Lee, O., Seong, D., Lee, C., Lee, E. (2015). Sustainable production of liquid biofuels from renewable microalgae biomass. Journal of Industrial and Engineering Chemistry, 29, 24-31.
Li, L., Cui, J., Liu, Q., Ding, Y., Liu, J. (2015). Screening and phylogenetic analysis of lipid-rich microalgae. Algal Research, 11, 381–386.
Author. (2014).
Author. (2019).
Singh, P., Guldhe, A., Kumari, S., Rawat, I., Bux, F. (2015). Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 94, 22–29.
Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., Yuan, Z. (2013). Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology, 152, 292–298.
Francisco, É., Neves, D., Jacob-Lopes, E., & Franco, T. (2010). Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology & Biotechnology, 85(3), 395-403.
Ramos, M. J., Fernández, C. M., Casas, A., RodrÃguez, L., & Pérez, Ã. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–268. doi: 10.1016/j.biortech.2008.06.039
RamÃrez-Verduzco, L., RodrÃguez-RodrÃguez, J., & Jaramillo-Jacob, A. (2012). Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91(1).
Wu, H., & Miao, X. (2014). Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresource Technology, 170, 421-427.
Agirman, N., & Cetin, A. (2017). Effect of nitrogen limitation on growth, total lipid accumulation and protein amount in Scenedesmus acutus as biofuel reactor candidate. Natural Science and Discovery, 3(3), 33-38.
BenMoussa-Dahmen, I., Chtourou, H., Rezgui, F., Sayadi, S., & Dhouib, A. (2016). Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production. Bioresource Technology, 218, 816-825.
Subramanian, V., Dubini, A., & Seibert, M. (2012). Metabolic Pathways in Green Algae with Potential Value for Biofuel Production. Cellular Origin, Life in Extreme Habitats and Astrobiology, 399-422.
Klass, D.L., (2004). Biomass for renewable energy and fuels. In: Cleveland, C.J. (Ed.), Encyclopedia of Energy, vol. 1. Amsterdam: Elsevier Inc.
Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresource Technology, 102(1), 123-129.
Goold, H., Beisson, F., Peltier, G., & Li-Beisson, Y. (2014). Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Reports, 34(4), 545-555.
Zhu, L., Li, Z., Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed Research International, 1-8.
Chen, Z., Wang, L., Qiu, S., & Ge, S. (2018). Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. Biomed Research International, 2018, 1-17.
Sharmin, T., Monirul Hasan, C., Aftabuddin, S., Rahman, M., & Khan, M. (2016). Growth, fatty acid, and lipid composition of marine microalgae Skeletonema costatum available in Bangladesh Coast: consideration as biodiesel feedstock. Journal of Marine Biology, 2016, 1-8.
Venkata, Mohan S., Devi, M.P., (2014). Salinity stress induced lipid synthesis during dual mode cultivation of mixotrophic microalgae. Bioresour. Technol.
Jena, J., Nayak, M., Panda, H., Pradhan, N., Sarika, C., & Panda, P. et al. (2012). Microalgae of Odisha Coast as a potential source for biodiesel production. World Environment, 2(1), 11-16.
Haraldsson, G. (1984). Separation of saturated/unsaturated fatty acids. Journal of The American Oil Chemists' Society, 61(2), 219-222.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.