POTENTIAL APPLICATIONS OF LIGNIN AND ITS DERIVATIVES FROM LIGNOCELLULOSIC BIOMASS – A REVIEW

Authors

  • Madihah Md Salleh Biorefinery Technology Laboratory, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Rohaya Mohd Noor Biorefinery Technology Laboratory, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Adibah Yahya Biorefinery Technology Laboratory, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Suraini Abd-Aziz Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Huszalina Hussin Biorefinery Technology Laboratory, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.15032

Keywords:

Lignocellulosic biomass, polyphenolic, cellulose, hemicellulose, lignin, lignin derivatives, extraction

Abstract

Lignin is the second most abundant component of lignocellulose biomass after cellulose with annual production of 70 million tons. Lignin constitutes between 15 to 40 percent of its dry weight, with varying composition in woody plants such as softwood (18-25%) and hardwood (27-33%), and non-woody plant such as grass (17-24%). The polyphenolic polymer is made up of three monolignols such as coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol that later forms an aromatic structure consisting of guaiacyl, syringyl, and p-hydroxyphenyl. The highly branched three-dimensional structure is both complex and recalcitrant, hence making its utilization difficult. However, the polymeric lignin can be extracted by various methods such as physical, chemical and biological. The extracted lignin has high potential to be converted into monomeric aromatic derivatives that could serve as a building block for chemical synthesis, biomaterials, bio-oils, wastewater treatment and food industry. The conversion involves several methods such as alkaline nitrobenzene, pyrolysis, catalytic technology, combustion, gasification, hydrocracking and oxidation.

References

Jang, S.-K., Kim, H.-Y., Jeong, H.-S., Kim, J.-Y., Yeo, H., and Choi, I.-G. 2016. Effect of Ethanol Organosolv Pretreatment Factors on Enzymatic Digestibility And Ethanol Organosolv Lignin Structure from Liriodendron tulipifera in Specific Combined Severity Factors. Renewable Energy. 87: 599-606.

Cai, J., He, Y., Yu, X., Banks, S. W., Yang, Y., Zhang, X., Yu, Y., Liu, R., and Bridgwater, A. V. 2017. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renewable and Sustainable Energy Reviews. 76: 309-322.

Morgan Jr, H. M., Bu, Q., Liang, J., Liu, Y., Mao, H., Shi, A., Lei, H., and Ruan, R. 2017. A Review of Catalytic Microwave Pyrolysis of Lignocellulosic Biomass for Value-added Fuel and Chemicals. Bioresource Technology. 230: 112-121.

Saini, J.K., Saini, R., and Tewari, L. 2015. Lignocellulosic Agriculture Wastes as Biomass Feedstocks for Second-generation Bioethanol Production: Concepts And Recent Developments. 3 Biotech. 5(4): 337-353.

Feng, Q. and Lin, Y. 2017. Integrated Processes of Anaerobic Digestion and Pyrolysis for Higher Bioenergy Recovery from lignocellulosic Biomass: A Brief Review. Renewable and Sustainable Energy Reviews. 77: 1272-1287.

Singh, Y. D., Mahanta, P., and Bora, U. 2017. Comprehensive Characterization of Lignocellulosic Biomass through Proximate, Ultimate and Compositional Analysis for Bioenergy Production. Renewable Energy. 103: 490-500.

Sawatdeenarunat, C., Surendra, K., Takara, D., Oechsner, H., and Khanal, S. K. 2015. Anaerobic Digestion of Lignocellulosic Biomass: Challenges and Opportunities. Bioresource Technology. 178: 178-186.

Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A., and Lappas, A. A. 2014. A Study of Lignocellulosic Biomass Pyrolysis via the Pyrolysis of Cellulose, Hemicellulose and Lignin. Journal of Analytical and Applied Pyrolysis. 105: 143-150.

Lu, Y., Lu, Y.-C., Hu, H.-Q., Xie, F.-J., Wei, X.-Y., and Fan, X. 2017. Structural Characterization of Lignin and Its Degradation Products with Spectroscopic Methods. Journal of Spectroscopy. 2017.

Yoo, C. G., Pu, Y., and Ragauskas, A. J. 2017. Ionic Liquids: Promising Green Solvents for Lignocellulosic Biomass Utilization. Current Opinion in Green and Sustainable Chemistry. 5: 5-11.

Pradyawong, S., Qi, G., Li, N., Sun, X. S., and Wang, D. 2017. Adhesion Properties of Soy Protein Adhesives Enhanced by Biomass Lignin. International Journal of Adhesion and Adhesives. 75: 66-73.

Hussin, M. H., Rahim, A. A., Ibrahim, M. N. M., and Brosse, N. 2016. The Capability of Ultrafiltrated Alkaline and Organosolv Oil Palm (Elaeis guineensis) Fronds Lignin as Green Corrosion Inhibitor for Mild Steel in 0.5 M HCl solution. Measurement. 78: 90-103.

Movil-Cabrera, O., Rodriguez-Silva, A., Arroyo-Torres, C., and Staser, J. A. 2016. Electrochemical Conversion of Lignin to Useful Chemicals. Biomass and Bioenergy. 88: 89-96.

Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., and Vardon, D. R. 2016. Opportunities and Challenges in biological lignin valorization. Current Opinion in Biotechnology. 42: 40-53.

Aarabi, A., Mizani, M., and Honarvar, M. 2017. The Use of Sugar Beet Pulp Lignin for the Production of Vanillin. International Journal of Biological Macromolecules. 94: 345-354.

Fernández-Rodríguez, J., Erdocia, X., Sánchez, C., Alriols, M. G., and Labidi, J. 2017. Lignin Depolymerization for Phenolic Monomers Production by Sustainable Processes. Journal of Energy Chemistry. 26(4): 622-631.

Gillgren, T., Hedenström, M., and Jönsson, L. J. 2017. Comparison of Laccase-catalyzed Cross-linking of Organosolv Lignin and Lignosulfonates. International Journal of Biological Macromolecules. 105: 438-446.

Qian, Y., Otsuka, Y., Sonoki, T., Mukhopadhyay, B., Nakamura, M., Jellison, J., and Goodell, B. 2016. Engineered Microbial Production of 2-pyrone-4, 6-Dicarboxylic Acid from Lignin Residues for Use as an Industrial Platform Chemical. BioResources. 11(3): 6097-6109.

Naseem, A., Tabasum, S., Zia, K. M., Zuber, M., Ali, M., and Noreen, A. 2016. Lignin-derivatives based Polymers, Blends and Composites: A Review. International Journal of Biological Macromolecules. 93: 296-313.

Saberikhah, E., Mohammadi-Rovshandeh, J., and Mamaghani, M. 2013. Spectroscopis Comparison of Organosolv Lignins Isolated from Wheat Straw. Cell. Chem. Technol. 47(5-6): 40-418.

Hidajat, M. J., Riaz, A., Park, J., Insyani, R., Verma, D., and Kim, J. 2017. Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin to High-yield aromatic Monomers in Basic Sub-and Supercritical Fluids. Chemical Engineering Journal. 317: 9-19.

Pushkin, S. A., Kozlova, L. V., Makarov, A. A., Grachev, A. N., and Gorshkova, T. A. 2015. Cell Wall Components in Torrefied Softwood and Hardwood Samples. Journal of Analytical and Applied Pyrolysis. 116: 102-113.

Custodis, V. B., Bährle, C., Vogel, F., and van Bokhoven, J. A. 2015. Phenols and Aromatics from Fast Pyrolysis of Variously Prepared Lignins from Hard-and Softwoods. Journal of Analytical and Applied Pyrolysis. 115: 214-223.

Anwar, Z., Gulfraz, M., and Irshad, M. 2014. Agro-industrial Lignocellulosic Biomass a Key to Unlock the Future Bio-energy: A Brief Review. Journal of Radiation Research and Applied Sciences. 7(2): 163-173.

Isikgor, F. H. and Becer, C. R. 2015. Lignocellulosic Biomass: a Sustainable Platform for the Production of Bio-based Chemicals and Polymers. Polymer Chemistry. 6(25): 4497-4559.

Pathak, S. and Chaudhary, H. 2013. Perspective of Microbial Species used in Lignocelluloses Bioconversion. Cellulose. 35: 50.

Nazir, M. S., Wahjoedi, B. A., Yussof, A. W., and Abdullah, M. A. 2013. Eco-friendly Extraction and Characterization of Cellulose from Oil Palm Empty Fruit Bunches. BioResources. 8(2): 2161-2172.

Maniet, G., Schmetz, Q., Jacquet, N., Temmerman, M., Gofflot, S., and Richel, A. 2017. Effect of Steam Explosion Treatment on Chemical Composition and Characteristic of Organosolv Fescue Lignin. Industrial Crops and Products. 99: 79-85.

Ghaffar, S. H. and Fan, M. 2013. Structural Analysis for Lignin Characteristics in Biomass Straw. Biomass and Bioenergy. 57: 264-279.

Sannigrahi, P., Miller, S. J., and Ragauskas, A. J. 2010. Effects of Organosolv Pretreatment and Enzymatic Hydrolysis on Cellulose Structure and Crystallinity in Loblolly Pine. Carbohydrate Research. 345(7): 965-970.

Gismatulina, Y. A. and Budaeva, V. V. 2017. Chemical Composition of Five Miscanthus sinensis Harvests and Nitric-acid Cellulose Therefrom. Industrial Crops and Products. 109: 227-232.

Morales, L. O., Iakovlev, M., Martin-Sampedro, R., Rahikainen, J. L., Laine, J., van Heiningen, A., and Rojas, O. J. 2014. Effects of Residual Lignin and Heteropolysaccharides on the Bioconversion of Softwood Lignocellulose Nanofibrils Obtained by SO2–ethanol–water Fractionation. Bioresource Technology. 161: 55-62.

Yedro, F. M., Grénman, H., Rissanen, J. V., Salmi, T., Garcia-Serna, J., and Cocero, M. J. 2017. Chemical Composition and Extraction Kinetics of Holm Oak (Quercus ilex) Hemicelluloses using Subcritical Water. The Journal of Supercritical Fluids. 129: 56-62.

Ciolacu, D., Ciolacu, F., and Popa, V. I. 2011. Amorphous Cellulose—structure and Characterization. Cellulose Chemistry and Technology. 45(1): 13.

Richter, A. P., Brown, J. S., Bharti, B., Wang, A., Gangwal, S., Houck, K., Hubal, E. A. C., Paunov, V. N., Stoyanov, S. D., and Velev, O. D. 2015. An Environmentally Benign Antimicrobial Nanoparticle based on a Silver-infused Lignin Core. Nature Nanotechnology. 10(9): 817.

Matsushita, Y. 2015. Conversion of Technical Lignins to Functional Materials with Retained Polymeric Properties. Journal of Wood Science. 61(3): 230.

Hatakeyama, H. and Hatakeyama, T. 2009. Lignin Structure, Properties, and Applications. Biopolymers. Springer. 1-63.

She, D., Nie, X., Xu, F., Geng, Z., Jia, H., Jones, G., and Baird, M. 2012. Physico-chemical characterization of different alcohol-soluble lignins from rice straw. Cellulose Chemistry and Technology. 46(3): 207.

Medina, J. D. C., Woiciechowski, A. L., Zandona Filho, A., Bissoqui, L., Noseda, M. D., de Souza Vandenberghe, L. P., Zawadzki, S. F., and Soccol, C. R. 2016. Biological Activities and Thermal Behavior of Lignin from Oil Palm Empty Fruit Bunches as Potential Source of Chemicals of Added Value. Industrial Crops and Products. 94: 630-637.

Xu, C., Arancon, R. A. D., Labidi, J., and Luque, R. 2014. Lignin Depolymerisation Strategies: Towards Valuable Chemicals and Fuels. Chemical Society Reviews. 43(22): 7485-7500.

Prieur, B., Meub, M., Wittemann, M., Klein, R., Bellayer, S., Fontaine, G., and Bourbigot, S. 2017. Phosphorylation of Lignin: Characterization and Investigation of the Thermal Decomposition. RSC Advances. 7(27): 16866-16877.

Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., and Weckhuysen, B. M. 2010. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews. 110(6): 3552-3599.

Agrawal, A., Kaushik, N., and Biswas, S. 2014. Derivatives and Applications of Lignin–An insight. The SciTech Journal. 1(7): 30-36.

Li, Q., Gao, Y., Wang, H., Li, B., Liu, C., Yu, G., and Mu, X. 2012. Comparison of Different Alkali-based Pretreatments of Corn Stover for Improving Enzymatic Saccharification. Bioresource Technology. 125: 193-199.

Si, S., Chen, Y., Fan, C., Hu, H., Li, Y., Huang, J., Liao, H., Hao, B., Li, Q., and Peng, L. 2015. Lignin Extraction Distinctively Enhances Biomass Enzymatic Saccharification in Hemicelluloses-rich Miscanthus Species under Various Alkali and Acid Pretreatments. Bioresource Technology. 183: 248-254.

Xie, J., Hse, C. Y., Shupe, T. F., and Hu, T. 2015. Physicochemical Characterization of Lignin Recovered from Microwave‐assisted Delignified Lignocellulosic Biomass for Use in Biobased Materials. Journal of Applied Polymer Science. 132(40).

Harman-Ware, A. E., Crocker, M., Pace, R. B., Placido, A., Morton, S., and DeBolt, S. 2015. Characterization of Endocarp Biomass and Extracted Lignin using Pyrolysis and Spectroscopic Methods. BioEnergy Research. 8(1): 350-368.

Li, M.-F., Sun, S.-N., Xu, F., and Sun, R.-C. 2012. Microwave-assisted Organic Acid Extraction of Lignin from Bamboo: Structure and Antioxidant Activity Investigation. Food Chemistry. 134(3): 1392-1398.

Guerra, A., Filpponen, I., Lucia, L. A., Saquing, C., Baumberger, S., and Argyropoulos, D. S. 2006. Toward a Better Understanding of the Lignin Isolation Process from Wood. Journal of Agricultural and Food Chemistry. 54(16): 5939-5947.

Lai, C., Tu, M., Shi, Z., Zheng, K., Olmos, L. G., and Yu, S. 2014. Contrasting Effects of Hardwood and Softwood Organosolv Lignins on Enzymatic Hydrolysis of Lignocellulose. Bioresource Technology. 163: 320-327.

Hatfield, R. and Fukushima, R. S. 2005. Can Lignin be Accurately Measured? Crop Science. 45(3): 832-839.

Fukushima, R. S., Kerley, M. S., Ramos, M. H., Porter, J. H., and Kallenbach, R. L. 2015. Comparison of Acetyl Bromide Lignin with Acid Detergent Lignin and Klason Lignin and Correlation with In Vitro Forage Degradability. Animal Feed Science and Technology. 201: 25-37.

Lee, S. H., Doherty, T. V., Linhardt, R. J., and Dordick, J. S. 2009. Ionic Liquid‐mediated Selective Extraction of Lignin from Wood Leading to Enhanced Enzymatic Cellulose Hydrolysis. Biotechnology and Bioengineering. 102(5): 1368-1376.

Espinoza-Acosta, J. L., Torres-Chávez, P. I., Carvajal-Millán, E., Ramírez-Wong, B., Bello-Pérez, L. A., and Montaño-Leyva, B. 2014. Ionic Liquids and Organic Solvents for Recovering Lignin from Lignocellulosic Biomass. BioResources. 9(2): 3660-3687.

Oghbaie, M., Mirshokraie, S., Massoudi, A., and Partovi, T. 2014. Extraction Of Lignins Using A Modified Dioxane Method and an Ionic Liquid and Comparative Molecular Weight and Structural Studies by Chromatography and ¹³C NMR Spectroscopy Techniques. Journal of Modern Chemistry. 2(5): 36-40.

Sidik, D. A. B., Ngadi, N., and Amin, N. A. S. 2013. Optimization of Lignin Production from Empty Fruit Bunch via Liquefaction with Ionic Liquid. Bioresource Technology. 135: 690-696.

Fu, D., Mazza, G., and Tamaki, Y. 2010. Lignin Extraction from Straw by Ionic Liquids and Enzymatic Hydrolysis of the Cellulosic Residues. Journal of Agricultural and Food Chemistry. 58(5): 2915-2922.

Ma, H.-H., Zhang, B.-X., Zhang, P., Li, S., Gao, Y.-F., and Hu, X.-M. 2016. An Efficient Process for Lignin Extraction and Enzymatic Hydrolysis of Corn Stalk by Pyrrolidonium Ionic Liquids. Fuel Processing Technology. 148: 138-145.

Underkofler, K. A., Teixeira, R. E., Pietsch, S. A., Knapp, K. G., and Raines, R. T. 2015. Separation of Lignin from Corn Stover Hydrolysate with Quantitative Recovery of Ionic Liquid. ACS Sustainable Chemistry & Engineering. 3(4): 606-613.

Dibble, D. C., Li, C., Sun, L., George, A., Cheng, A., Çetinkol, Ö. P., Benke, P., Holmes, B. M., Singh, S., and Simmons, B. A. 2011. A Facile Method for the Recovery of Ionic Liquid and Lignin from Biomass Pretreatment. Green Chemistry. 13(11): 3255-3264.

Hansen, B., Kusch, P., Schulze, M., and Kamm, B. 2016. Qualitative and Quantitative Analysis of Lignin Produced from Beech Wood by Different Conditions of the Organosolv Process. Journal of Polymers and the Environment. 24(2): 85-97.

Lu, Q., Liu, W., Yang, L., Zu, Y., Zu, B., Zhu, M., Zhang, Y., Zhang, X., Zhang, R., and Sun, Z. 2012. Investigation of the Effects of Different Organosolv Pulping Methods on Antioxidant Capacity and Extraction Efficiency of Lignin. Food Chemistry. 131(1): 313-317.

Monteil-Rivera, F., Huang, G.H., Paquet, L., Deschamps, S., Beaulieu, C., and Hawari, J. 2012. Microwave-assisted Extraction of Lignin from Triticale Straw: Optimization and Microwave Effects. Bioresource Technology. 104: 775-782.

Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., and Jeelani, S. 2015. Extraction and Characterization of Lignin from Different Biomass Resources. Journal of Materials Research and Technology. 4(1): 26-32.

Ye, Y., Liu, Y., and Chang, J. 2014. Application of Solubility Parameter Theory to Organosolv Extraction of Lignin from Enzymatically Hydrolyzed Cornstalks. BioResources. 9(2): 3417-3427.

Guo, G., Li, S., Wang, L., Ren, S., and Fang, G. 2013. Separation and Characterization of Lignin from Bio-ethanol Production Residue. Bioresource Technology. 135: 738-741.

Manara, P., Zabaniotou, A., Vanderghem, C., and Richel, A. 2014. Lignin Extraction from Mediterranean Agro-wastes: Impact of Pretreatment Conditions on Lignin Chemical Structure and Thermal Degradation Behavior. Catalysis Today. 223: 25-34.

de la Torre, M. J., Moral, A., Hernández, M. D., Cabeza, E., and Tijero, A. 2013. Organosolv Lignin for Biofuel. Industrial Crops and Products. 45: 58-63.

Cybulska, I., Brudecki, G., Rosentrater, K., Julson, J. L., and Lei, H. 2012. Comparative Study of Organosolv Lignin Extracted from Prairie Cordgrass, Switchgrass and Corn Stover. Bioresource Technology. 118: 30-36.

Patrícia, M., Lino, J., Duarte, L. C., Roseiro, L., Boeriu, C. G., Pereira, H., and Carvalheiro, F. 2015. Fractionation of Hemicelluloses and Lignin from Rice Straw by Combining Autohydrolysis and Optimised Mild Organosolv Delignification. BioResources. 10: 2626-2641.

Zhang, A., Lu, F., Sun, R.-C., and Ralph, J. 2010. Isolation of Cellulolytic Enzyme Lignin from Wood Preswollen/dissolved in Dimethyl sulfoxide/N-methylimidazole. Journal of Agricultural and Food Chemistry. 58(6): 3446-3450.

Rencoret, J., Prinsen, P., Gutiérrez, A., Martı́nez, A.n.T., and del Rı́o, J. C. 2015. Isolation and Structural Characterization of the Milled Wood Lignin, Dioxane Lignin, and Cellulolytic Lignin Preparations from Brewer’s Spent Grain. Journal of Agricultural and Food Chemistry. 63(2): 603-613.

Lai, L. W., Idris, A., and Yusof, N. M. 2014. Lignin Extraction from Oil Palm Ttrunk by Microwave-alkali Technique. Malaysian Journal of Fundamental and Applied Sciences. 10(2).

Jääskeläinen, A., Sun, Y., Argyropoulos, D., Tamminen, T., and Hortling, B. 2003. The Effect of Isolation Method on the Chemical Structure of Residual Lignin. Wood Science and Technology. 37(2): 91-102.

Nakagame, S., Chandra, R. P., Kadla, J. F., and Saddler, J. N. 2011. The Isolation, Characterization and Effect of Lignin Isolated from Steam Pretreated Douglas-Fir on the Enzymatic Hydrolysis of Cellulose. Bioresource Technology. 102(6): 4507-4517.

Horst, D. J., Behainne, J. J. R., de Andrade Júnior, P. P., and Kovaleski, J. L. 2014. An Experimental Comparison of Lignin Yield from the Klason and Willstatter Extraction Methods. Energy for Sustainable Development. 23: 78-84.

Sa’don, N. A., Rahim, A. A., and Hussin, M. H. 2017. The Effect of p-nitrophenol Toward the Structural Characteristics and Antioxidant Activity of Oil Palm Fronds (OPF) Lignin Polymers. International Journal of Biological Macromolecules. 98: 701-708.

Quesada-Medina, J., Lopez-Cremades, F. J., and Olivares-Carrillo, P. 2010. Organosolv Extraction of Lignin from Hydrolyzed Almond Shells and Application of the δ-value Theory. Bioresource Technology. 101(21): 8252-8260.

Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodríguez, H., and Rogers, R. D. 2009. Complete Dissolution and Partial Delignification of Wood in the Ionic Liquid 1-ethyl-3-Methylimidazolium Acetate. Green Chemistry. 11(5): 646-655.

Fu, D. and Mazza, G. 2011. Aqueous Ionic Liquid Pretreatment of Straw. Bioresource Technology. 102(13): 7008-7011.

Gordobil, O., Delucis, R., Egüés, I., and Labidi, J. 2015. Kraft Lignin as Filler in PLA to Improve Ductility and Thermal Properties. Industrial Crops and Products. 72: 46-53.

Constant, S., Basset, C., Dumas, C., Di Renzo, F., Robitzer, M., Barakat, A., and Quignard, F. 2015. Reactive Organosolv Lignin Extraction from Wheat Straw: Influence of Lewis Acid Catalysts on Structural and Chemical Properties of Lignins. Industrial Crops and Products. 65: 180-189.

Gabov, K., Gosselink, R. J., Smeds, A. I., and Fardim, P. 2014. Characterization of Lignin Extracted from Birch Wood by a Modified Hydrotropic Process. Journal of Agricultural and Food Chemistry. 62(44): 10759-10767.

Avelino, F., da Silva, K. T., de Souza, M.d. S. M., Mazzetto, S. E., and Lomonaco, D. 2018. Microwave-assisted Organosolv Extraction of Coconut Shell Lignin by Brønsted and Lewis Acids Catalysts. Journal of Cleaner Production. 189: 785-796.

García, A., Spigno, G., and Labidi, J. 2017. Antioxidant and Biocide Behaviour of Lignin Fractions from Apple Tree Pruning Residues. Industrial Crops and Products. 104: 242-252.

Muhammad, N., Man, Z., Bustam, M. A., Mutalib, M. A., and Rafiq, S. 2013. Investigations of Novel Nitrile-based Ionic Liquids as Pre-treatment Solvent for Extraction of Lignin from Bamboo Biomass. Journal of Industrial and Engineering Chemistry. 19(1): 207-214.

Korotkova, E., Pranovich, A., Wärnå, J., Salmi, T., Murzin, D. Y., and Willför, S. 2015. Lignin Isolation from Spruce Wood with Low Concentration Aqueous Alkali at High Temperature and Pressure: Influence of Hot-Water Pre-Extraction. Green Chemistry. 17(11): 5058-5068.

Lee, R. A., Berberi, V., Labranche, J., and Lavoie, J.-M. 2014. Lignin Extraction–Reassessment of the Severity Factor with Respect to Hydroxide Concentration. Bioresource Technology. 169: 707-712.

Shweta, K. and Jha, H. 2015. Rice Husk Extracted Lignin–TEOS Biocomposites: Effects of Acetylation and Silane Surface Treatments for Application in Nickel Removal. Biotechnology Reports. 7: 95-106.

Mohtar, S. S., Busu, T. N. Z. T. M., Noor, A. M. M., Shaari, N., and Mat, H. 2017. An Ionic Liquid Treatment and Fractionation of Cellulose, Hemicellulose and Lignin from Oil Palm Empty Fruit Bunch. Carbohydrate Polymers. 166: 291-299.

Casas, A., Oliet, M., Alonso, M., and Rodriguez, F. 2012. Dissolution of Pinus radiata and Eucalyptus Globulus Woods in Ionic Liquids Under Microwave Radiation: Lignin Regeneration and Characterization. Separation and Purification Technology. 97: 115-122.

Klapiszewski, Ł., Bartczak, P., Wysokowski, M., Jankowska, M., Kabat, K., and Jesionowski, T. 2015. Silica Conjugated with Kraft Lignin and Its Use as a Novel ‘Green’sorbent For Hazardous Metal Ions Removal. Chemical Engineering Journal. 260: 684-693.

Kong, F., Parhiala, K., Wang, S., and Fatehi, P. 2015. Preparation of Cationic Softwood Kraft Lignin and Its Application in Dye Removal. European Polymer Journal. 67: 335-345.

He, W., Zhang, Y., and Fatehi, P. 2016. Sulfomethylated Kraft Lignin as a Flocculant for Cationic Dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 503: 19-27.

Xu, F., Zhu, T.-T., Rao, Q.-Q., Shui, S.-W., Li, W.-W., He, H.-B., and Yao, R.-S. 2017. Fabrication of Mesoporous Lignin-based Biosorbent from Rice Straw and Its Application for Heavy-Metal-Ion Removal. Journal of Environmental Sciences. 53: 132-140.

Ge, Y., Qin, L., and Li, Z. 2016. Lignin Microspheres: An Effective and Recyclable Natural Polymer-based Adsorbent for Lead Ion Removal. Materials & Design. 95: 141-147.

Li, Z., Chen, J., and Ge, Y. 2017. Removal of Lead Ion and Oil Droplet from Aqueous Solution by Lignin-grafted Carbon Nanotubes. Chemical Engineering Journal. 308: 809-817.

Thakur, S., Govender, P. P., Mamo, M. A., Tamulevicius, S., Mishra, Y. K., and Thakur, V. K. 2017. Progress in Lignin Hydrogels and Nanocomposites for Water Purification: Future Perspectives. Vacuum. 146: 342-355.

Piña, I., Ysambertt, F., Perez, D., and Lopez, K. 2015. Study of Antioxidant Effectiveness of Kraft Lignin in HDPE. Journal of Polymers. 2015.

mnim Altwaiq, A., Sa’ib, J. K., Al-luaibi, S., Lehmann, R., Drücker, H., and Vogt, C. 2011. The Role of Extracted Alkali Lignin as Corrosion Inhibitor. J. Mater. Environ. Sci. 2(3): 259-270.

Hussin, M. H., Rahim, A. A., Ibrahim, M. N. M., and Brosse, N. 2015. Improved Corrosion Inhibition of Mild Steel by Chemically Modified Lignin Polymers from Elaeis Guineensis Agricultural Waste. Materials Chemistry and Physics. 163: 201-212.

Akbarzadeh, E., Ibrahim, M. M., and Rahim, A. A. 2011. Corrosion Inhibition of Mild Steel in Near Neutral Solution by Kraft and Soda Lignins Extracted from Oil Palm Empty Fruit Bunch. Int. J. Electrochem. Sci. 6(11): 5396-5416.

Sunthornvarabhas, J., Liengprayoon, S., and Suwonsichon, T. 2017. Antimicrobial Kinetic Activities of Lignin from Sugarcane Bagasse for Textile Product. Industrial Crops and Products. 109: 857-861.

Domenek, S., Louaifi, A., Guinault, A., and Baumberger, S. 2013. Potential of Lignins as Antioxidant Additive in Active Biodegradable Packaging Materials. Journal of Polymers and the Environment. 21(3): 692-701.

Kleinert, M. and Barth, T. 2008. Phenols from Lignin. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology. 31(5): 736-745.

Fu, D., Farag, S., Chaouki, J., and Jessop, P. G. 2014. Extraction of Phenols from Lignin Microwave-pyrolysis Oil using a Switchable Hydrophilicity Solvent. Bioresource technology. 154: 101-108.

Qiao, W., Li, S., and Xu, F. 2016. Preparation and Characterization of a Phenol-formaldehyde Resin Adhesive obtained from Bio-ethanol Production Residue. Polymers & Polymer Composites. 24(2): 99.

Vega-Aguilar, C. A., Lutz, G., and Mata-Segreda, J. F. 2015. Phenolic Resin Derived fromJatropha Curcas Seed-husk Lignin as Phenol Substitute. Cuadernos de Investigación UNED. 7(2): 217-223.

Muranaka, Y., Nakagawa, H., Hasegawa, I., Maki, T., Hosokawa, J., Ikuta, J., and Mae, K. 2017. Lignin-based Resin Production from Lignocellulosic Biomass Combining Acidic Saccharification and Acetone-water Treatment. Chemical Engineering Journal. 308: 754-759.

Abdelwahab, N. and Nassar, M. 2011. Preparation, Optimisation and Characterisation of Lignin Phenol Formaldehyde Resin as Wood Adhesive. Pigment & Resin Technology. 40(3): 169-174.

Cetin, N. S. and Özmen, N. 2002. Use of Organosolv Lignin In Phenol–formaldehyde Resins for Particleboard Production: I. Organosolv Lignin Modified Resins. International Journal of Adhesion and Adhesives. 22(6): 477-480.

Pang, B., Yang, S., Fang, W., Yuan, T.-Q., Argyropoulos, D. S., and Sun, R.-C. 2017. Structure-property Relationships for Technical Lignins for the Production of Lignin-phenol-formaldehyde Resins. Industrial Crops and Products. 108: 316-326.

Zhao, M., Jing, J., Zhu, Y., Yang, X., Wang, X., and Wang, Z. 2016. Preparation and Performance of Lignin–phenol–formaldehyde Adhesives. International Journal of Adhesion and Adhesives. 64: 163-167.

Tachon, N., Benjelloun-Mlayah, B., and Delmas, M. 2016. Organosolv Wheat Straw Lignin as a Phenol Substitute for Green Phenolic Resins. BioResources. 11(3): 5797-5815.

Pinheiro, F. G. C., Soares, A. K. L., Santaella, S. T., e Silva, L. M. A., Canuto, K. M., Cáceres, C. A., de Freitas Rosa, M., de Andrade Feitosa, J. P., and Leitão, R. C. 2017. Optimization of the Acetosolv Extraction of Lignin from Sugarcane Bagasse for Phenolic Resin Production. Industrial Crops and Products. 96: 80-90.

Bi, P., Wang, J., Zhang, Y., Jiang, P., Wu, X., Liu, J., Xue, H., Wang, T., and Li, Q. 2015. From Lignin to Cycloparaffins and Aromatics: Directional Synthesis of Jet and Diesel Fuel Range Biofuels using Biomass. Bioresource Technology. 183: 10-17.

Saidi, M. and Jahangiri, A. 2017. Refinery Approach of Bio-oils Derived from Fast Pyrolysis of Lignin to Jet Fuel Range Hydrocarbons: Reaction Network Development for Catalytic Conversion of Cyclohexanone. Chemical Engineering Research and Design. 121: 393-406.

Gutiérrez-Antonio, C., Gómez-Castro, F., de Lira-Flores, J., and Hernández, S. 2017. A Review on the Production Processes of Renewable Jet Fuel. Renewable and Sustainable Energy Reviews. 79: 709-729.

Araújo, J. D., Grande, C. A., and Rodrigues, A. E. 2010. Vanillin Production from Lignin Oxidation in a Batch Reactor. Chemical Engineering Research and Design. 88(8): 1024-1032.

Moodley, B., Mulholland, D., and Brookes, H. 2012. The Chemical Oxidation of lignin Found in Sappi Saiccor Dissolving Pulp Mill Effluent. Water SA. 38(1): 1-8.

Tang, P.-L., Hassan, O., Maskat, M. Y., and Badri, K. 2015. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods. BioMed Research International. 2015.

Villar, J., Caperos, A., and Garcia-Ochoa, F. 2001. Oxidation of Hardwood Kraft-lignin to Phenolic Derivatives with Oxygen as Oxidant. Wood Science and Technology. 35(3): 245-255.

Pinto, P. C. R., Costa, C. E., and Rodrigues, A. E. 2013. Oxidation of Lignin from Eucalyptus Globulus Pulping Liquors to Produce Syringaldehyde and Vanillin. Industrial & Engineering Chemistry Research. 52(12): 4421-4428.

Shakeri, A., Rad, S. M., and Ghasemian, A. 2013. Oxidative Production of Vanillin from Industrial Lignin using Oxygen and Nitrobenzene: A Comparative Study. Int J Farming Allied Sci. 2: 1165-1171.

Ouyang, X.-p., Tan, Y.-d., and Qiu, X.-q. 2014. Oxidative Degradation of Lignin for Producing Monophenolic Compounds. Journal of Fuel Chemistry and Technology. 42(6): 677-682.

Li, Y., Chang, J., and Ouyang, Y. Selective Production of Aromatic Aldehydes from Lignin by Metalloporphyrins/H2O2 System. Advanced Materials Research. 2013. Trans Tech Publ.

Ngadi, N., Abdul Halim, N., and Ibrahim, M. 2014. Isolation and Characterization of Vanillin from Coconut Husk Lignin Via Alkaline Nitrobenzene Oxidation. J Teknol. 67: 19-23.

Downloads

Published

2023-04-19

Issue

Section

Science and Engineering

How to Cite

POTENTIAL APPLICATIONS OF LIGNIN AND ITS DERIVATIVES FROM LIGNOCELLULOSIC BIOMASS – A REVIEW. (2023). Jurnal Teknologi, 85(3), 43-59. https://doi.org/10.11113/jurnalteknologi.v85.15032