• W. Anggono Department of Mechanical Engineering Petra Christian University, Indonesia https://orcid.org/0000-0003-4044-7264
  • M. M. Noor Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Malaysia https://orcid.org/0000-0001-9201-1249
  • S. Liao College of Traffic & Transportation, Chongqing Jiaotong University, China http://orcid.org/0000-0001-7059-8536
  • K. Sanka Department of Mechanical Engineering Petra Christian University, Indonesia
  • G. J. Gotama Department of Mechanical Engineering Petra Christian University, Indonesia https://orcid.org/0000-0003-0601-3630
  • Sutrisno Department of Mechanical Engineering Petra Christian University, Indonesia
  • F. D. Suprianto Department of Mechanical Engineering Petra Christian University, Indonesia




Extraction, Jatropha curcas, biodiesel, engine performance, fuel characteristic


The development of high-quality biodiesel fuel has become more relevant due to the limited reserve and environmental effects of fossil fuel. In this study, oils derived from Jatropha curcas seeds through two extraction methods (soxhlet and cold-press) were compared. The fuel characteristics investigation suggested that methyl ester derived from oil extracted with the soxhlet method has lower viscosity, higher calculated cetane index, and slightly higher sulphur content. Comparison on the fuel characteristics with biodiesel standards showed that the methyl esters still had substantial amount of methanol and water due to low temperature during transesterification. The oils were also compared for their engine performances in a diesel engine under engine rotation of 1800 to 3000 RPM by blending derived methyl ester with pure petro-diesel to create B20 biodiesel. On average, B20 from soxhlet extraction has 3.86% higher power output, 3.55% higher torque, 3.4% higher BMEP, and 5.89% lower BSFC compared to cold-press. The extraction method affects the fuel characteristics of the methyl ester and the engine performances of the B20 biodiesel.


Aziz, N. N. F. A. N., Said, M., Malik, M. S. A., Ja’afar, M. N. M., Othman, N., Ariffin, M. K. and Hassan, M. F. 2020. Combustion Study of Waste Cooking Oil Biodiesel in an Oil Burner. Jurnal Teknologi (Sciences & Engineering). 82(4): 93-98.

DOI: http://doi.org/10.11113/jt.v82.13908.

Kusworo, A., Kumoro, A. C., Yaqin, M. A., Fatiyah, N. and Utomo, D. P. 2020. Modification of Nano Hybrid PES-ZnO Membrane Using UV Irradiation for Biodiesel Purification. Jurnal Teknologi (Sciences & Engineering). 82(5): 147-156.

DOI: https://doi.org/10.11113/jt.v82.14682.

Anggono, W., Sutrisno, Suprianto, F. D., Setiyo, M., Wibisono, R. and Gotama, G. J. 2019, January. Experimental Investigation of The Effect of Nephelium Lappaceum Seed Biodiesel to The Automotive Diesel Engine Performance. 9th International Conference on Future Environment and Energy. IOP Conf. Series: Earth and Environmental Science. 257: 012039.

DOI: http://doi.org/10.1088/1755-1315/257/1/012039.

Noor, M., Wandel, A. P., & Yusaf, T. 2014. MILD Combustion: The Future for Lean and Clean Combustion Technology. International Review of Mechanical Engineering. 8(1): 251-257.

DOI: https://doi.org/10.15866/ireme.v8i1.1267.

Sahu, S. K., Beig, G. and Parkhi, N. 2014. Critical Emissions from the Largest On-road Transport Network in South Asia. Aerosol and Air Quality Research. 14: 135-144.

DOI: http://doi.org/10.4209/aaqr.2013.04.0137.

Hamada, K. I., Rahman, M. M., Ramasamy, D., Noor, M. M. and Kadirgama, K. 2016. Numerical Investigation of In-Cylinder Flow Characteristics of Hydrogen-fueled Internal Combustion Engine. Journal of Mechanical Engineering and Sciences. 10(1): 1792-1802.

DOI: http://doi.org/10.15282/jmes.10.1.2016.4.0172.

Noor, M. M., Wandel, A. P. and Yusaf, T. 2014. Effect of Air-Fuel Ratio on Temperature Distribution and Pollutants for Biogas Mild Combustion. International Journal of Automotive and Mechanical Engineering. 10(15): 1980-1992.

DOI: http://doi.org/10.15282/ijame.10.2014.15.0166.

Liao, S. Y., Jiang, D. M., Cheng, Q., Huang, Z. H. and Wei, Q. 2005. Investigation of the Cold-start Combustion Characteristics of Ethanol-gasoline Blends in a Constant-volume Chamber. Energy & Fuels.19: 813-819.

DOI: http://doi.org/10.1021/ef049733l.

Kumarasamy, S., Mazlan, N. M., Abidin, M. S. Z. and Anjang, A. 2020. Influence of Biodiesel and Blended Fuels on the Tensile and Compressive Properties of Glass Fibre Reinforced Epoxy Composites. Jurnal Teknologi (Sciences & Engineering). 82(1): 41-47.

DOI: https://doi.org/10.11113/jt.v82.13812.

Hu, G., Liao, S. Y., Zuo, Z., Wang, K. and Zhu, Z. 2018. Kinetic Effects of Methanol Addition on The Formation and Consumption of Formaldehyde and Benzene in Premixed N-Heptane/Air Flames. Journal of Energy Resources Technology. 140(7): 072205.

DOI: http://doi.org/10.1115/1.4039612.

Anggono, W., Suprianto, F. D., Gotama, G. J., Sutrisno and Evander, J. 2018. Combustion Characteristics Behavior of Pterocarpus Indicus Leaves Waste Briquette at Various Particle Size and Pressure. 5th International Conference on Mechanics and Mechatronics Research. IOP Conf. Series: Materials Science and Engineering. 417: 012007.

DOI: http://doi.org/10.1088/1757-899X/417/1/012007.

Anggono, W. 2017. Behaviour of Biogas Containing Nitrogen on Flammability Limits and Laminar Burning Velocities. International Journal of Renewable Energy Research. 7(1): 304-310.

Anggono, W., Hayakawa, A., Okafor, E. C., Gotama, G. J. and Wongso, S. 2020. Laminar Burning Velocity and Markstein Length of CH4/CO2/Air Premixed Flames at Various Equivalence Ratios and CO2 Concentrations Under Elevated Pressure. Combustion Science and Technology. In-Press.

DOI: http://doi.org/10.1080/00102202.2020.1737032.

Arizal, M. A. A, Azman, A. H., Jaafar, M. N. M, Wan Omar, W. Z. 2015. Combustion Performance of Jatropha Biodiesel in an Oil Burner System. Jurnal Teknologi (Sciences & Engineering). 77(8): 47-51.

DOI: http://doi.org/10.11113/jt.v77.6153.

Mohiddin, M. N., Saleh, A. A., Reddy, A. N. R. and Hamdan, S. 2018. A Study on Chicken Fat as An Alternative Feedstock: Biodiesel Production, Fuel Characterisation, and Diesel Engine Performance Analysis. International Journal of Automotive and Mechanical Engineering. 15(3): 5535-5546.

DOI: http://doi.org/10.15282/ijame.15.3.2018.10.0425.

Said, N. H., Ani, F. N. and Said, M. F. M. 2015. Review of the Production of Biodiesel from Waste Cooking Oil Using Solid Catalysts. Journal of Mechanical Engineering and Sciences. 8: 1302-1311.

DOI: http://doi.org/10.15282/jmes.8.2015.5.0127.

Rajesh Kumar, S., and Sai Chaitanya, P. 2019. Role of Nanoadditive Blended Biodiesel Emulsion Fuel on the Performance and Emission Characteristics of Diesel Engine. Journal of Mechanical Engineering and Sciences. 13(2): 4869-4879.

DOI: http://doi.org/10.15282/jmes.13.2.2019.08.0405.

Kywe, T. T. and Oo, M. M. 2009. Production of Biodiesel from Jatropha Oil (Jatropha curcas) in Pilot Plant. World Academy of Science, Engineering and Technology. 50: 477-483.

Ofori-Boateng, C. and Teong, L. K. 2011. Feasibility of Jatropha Oil for Biodiesel: Economic Analysis. In World Renewable Energy Congress 2011.

DOI: http://doi.org/10.3384/ecp11057463.

Harreh, D., Saleh, A. A., Reddy, A. N. R., Hamdan, S. and Charyulu, K. 2018. Production of Karanja Methyl Ester from Crude Karanja Oil Using Meretrix lyrata Synthesised Active Cao Catalyst. International Journal of Automotive and Mechanical Engineering. 15(3): 5683-5694.

DOI: http://doi.org/10.15282/ijame.15.3.2018.21.0436.

Gashaw, A., Getachew, T. and Teshita, A. 2015. A Review on Biodiesel Production as Alternative Fuel. Journal of Forest Products & Industries. 4(2): 80-85.

Anggono, W., Ikoma, W., Chen, H., Liu, Z., Ichiyanagi, M., Suzuki, T., Gotama, G. J. 2019. Investigation of Intake Pressure and Fuel Injection Timing Effect on Performance Characteristics of Diesel Engine. 9th International Conference on Future Environment and Energy. IOP Conf. Series: Earth and Environmental Science. 257: 012037.

DOI: http://doi.org/10.1088/1755-1315/257/1/012037.

Parawira, W. 2010. Biodiesel Production from Jatropha Curcas: A Review. Scientific Research and Essays. 5(14): 1796-1808.

Salvi, B. L. and Panwar, N. L. 2012. Biodiesel Resources and Production Technologies - A Review. Renewable and Sustainable Energy Reviews. 16: 3680-3689.

DOI: http://doi.org/10.1016/j.rser.2012.03.050.

Azad, A. K., Ameer Uddin, S. M. and Alam, M. M. 2012. A Comprehensive Study of DI Diesel Engine Performance with Vegetable Oil: An Alternative Bio-fuel Source of Energy. International Journal of Automotive and Mechanical Engineering. 5: 576-586.

DOI: http://doi.org/10.15282/ijame.5.2012.4.0045.

Sarin, R., Sharma, M., Sinharay, S. and Malhotra, R. K. 2007. Jatropha-Palm Biodiesel Blends: An Optimum Mix for Asia. Fuel. 86: 1365-1371.

DOI : http://doi.org/10.1016/j.fuel.2006.11.040.

Farouk, H., Jaafar, M. N. M. and Atabani, A. E. 2014. A Study of Biodiesel Production from Crude Jatropha Oil (CJO) with High Level of Free Fatty Acids. Jurnal Teknologi (Sciences & Engineering). 69(3): 65-72.

DOI: http://doi.org/10.11113/jt.v69.3145.

Farhana, K., Kadirgama, K., Rahman, M. M., Ramasamy, D., Noor, M. M., Najafi, G., Samykano, M. and Mahamude, A. S. F. 2019. Improvement in the Performance of Solar Collectors with Nanofluids - A State of the Art Review. Nano Structures and Nano-objects. 18: 100276.

DOI: http://doi.org/10.1016/j.nanoso.2019.100276.

Takase, M., Zhao, T., Zhang, M., Chen, Y., Liu, H., Yang, L. and Wu, X. 2015. An Expatiate Review of Neem, Jatropha, Rubber and Karanja as Multipurpose Non-edible Biodiesel Resources and Comparison of Their Fuel, Engine and Emission Properties. Renewable and Sustainable Energy Reviews. 43: 495-520.

DOI: http://doi.org/10.1016/j.rser.2014.11.049.

Babazadeh, R. 2017. Optimal Design and Planning of Biodiesel Supply Chain Considering Non-edible Feedstock. Renewable and Sustainable Energy Reviews. 75: 1089-1100.

DOI: http://doi.org/10.1016/j.rser.2016.11.088.

Zamberi, M. M., Ani, F. N. and Abdollah, M. F. 2016. Heterogeneous Transesterification of Rubber Seed Oil Biodiesel Production. Jurnal Teknologi (Sciences & Engineering. 78(6-10): 105-110.

DOI: http://doi.org/10.11113/jt.v78.9196.

Bhaskar, K., Sendilvelan, S., Muthu, V. and Aravindraj, S. 2016. Performance and Emission Characteristics of Compression Ignition Engine Using Methyl Ester Blends of Jatropha and Fish Oil. Journal of Mechanical Engineering and Sciences. 10(2): 1994-2007.

DOI: http://doi.org/10.15282/jmes.10.2.2016.4.0188.

Anggono, W., Noor, M. M., Suprianto, F. D., Lesmana, L. A., Gotama, G. J. and Setiyawan, A. 2018. Effect of Cerbera manghas Biodiesel on Diesel Engine Performance. International Journal of Automotive and Mechanical Engineering. 15(3): 5667-5682.

DOI: http://doi.org/10.15282/ijame.15.3.2018.20.0435.

Zahari, M. S. M., Ismail, S. B., Ibrahim, M. Z., Lam, S. S. and Mat, R. 2015. Ultrasonicated Jatropha Curcas Seed Residual as Potential Biofuel Feedstock. Jurnal Teknologi (Sciences & Engineering). 77(1): 133-138.

DOI: http://doi.org/10.11113/jt.v77.4340.

Hoang, A. T., Noor, M. M. and Pham, X. D. 2018. Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel. International Journal of Automotive and Mechanical Engineering. 15(1): 5110-5125.

DOI: http://doi.org/10.15282/ijame.15.1.2018.16.0395.

Jain, S. and Sharma, M. P. 2010. Prospects of Biodiesel from Jatropha in India: A Review. Renewable and Sustainable Energy Reviews.14: 763-771.

DOI: http://doi.org/10.1016/j.rser.2009.10.005.

Achten, W. M. J., Verchot, L., Franken, Y. J., Mathijs, E., Singh, V. P., Aerts, R. and Muys, B. 2008. Jatropha Bio-Diesel Production and Use. Biomass and Bioenergy. 32(12): 1063-1084.

DOI: http://doi.org/10.1016/j.biombioe.2008.03.003.

Raja, S. A., Robinson smart, D. S., Lee, C. L. R. 2011. Biodiesel Production from Jatropha Oil and Its Characterization. Research Journal of Chemical Sciences. 1(1): 81-87.

Beerens, P. 2007. Screw-Pressing of Jatropha Seeds for Fueling Purposes in Less Developed Countries. Eindhoven University of Technology. Student Thesis: Master.

Forson, F. K., Oduro, E. K. and Hammond-Donkoh, E. 2004. Performance of Jatropha Oil Blends in A Diesel Engine. Renewable Energy. 29(7): 1135-1145.

DOI: http://doi.org/10.1016/j.renene.2003.11.002.

Rabé, E. L. M. 2006. Jatropha Oil in Compression Ignition Engines: Effects on the Engine, Environment and Tanzania as Supplying Country. Eindhoven University of Technology. Student Thesis: Master.

Ahmad, K. A., Abdullah, M. E., Hassan, N. A., Ambak, K. B., Musbah, A., Usman, N., Bakar, S. K. B. A. 2016. Extraction Techniques and Industrial Applications of Jatropha Curcas. Jurnal Teknologi (Sciences & Engineering). 78(7-3): 53-60.

DOI: http://doi.org/10.11113/jt.v78.9483.

Atabani, A. E., Silitonga, A. S., Irfan Anjum Badruddin, Mahlia, T. M. I., Masjuki, H. H. and Mekhilef, S. 2012. A Comprehensive Review on Biodiesel as An Alternative Energy Resource and Its Characteristics. Renewable and Sustainable Energy Reviews. 16(4): 2070-2093.

DOI: http://doi.org/10.1016/j.rser.2012.01.003.

Atabani, A. E., Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Irfan Anjum Badruddin and Fayaz, H. 2013. Non-Edible Vegetable Oils: A Critical Evaluation of Oil Extraction, Fatty Acid Compositions, Biodiesel Production, Characteristics, Engine Performance and Emissions Production. Renewable and Sustainable Energy Reviews. 18: 211-245.

DOI: http://doi.org/10.1016/j.rser.2012.10.013.

Özcan, M. M., Ghafoor, K., Al Juhaimi, F., Ahmed, I. A. M. and Babiker, E. E. 2019. Effect of Cold-Press and Soxhlet Extraction on Fatty Acids, Tocopherols and Sterol Contents of The Moringa Seed Oils. South African Journal of Botany. 124: 333-337

DOI: http://doi.org/10.1016/j.sajb.2019.05.010.

Ahmed, I. A. M., Al-Juhaimi, F. Y., Özcan, M. M., Osman, M. A., Gassem, M. A., Salih, H. A. A. 2019. Effects of Cold-Press and Soxhlet Extraction Systems on Antioxidant Activity, Total Phenol Contents, Fatty Acids, and Tocopherol Contents of Walnut Kernel Oils. Journal of Oleo Science. 68(2): 167-173.

DOI: http://doi.org/10.5650/jos.ess18141.

Vieira, D. S., Menezes, M., Gonçalves, G., Mukai, H., Lenzi, E. K., Pereira, N. C. and Fernandes, P. R. G. 2015. Temperature Dependence of Refractive Index and of Electrical Impedance of Grape Seed (Vitis Viniferam Vitis Labrusca) Oils Extracted by Soxhlet and Mechanical Pressing. Grasas Y Aceites. 66(3).

DOI: http://doi.org/10.3989/gya.0954142.

Ibrahim, S. M. A., Abed, K. A., Gad, M. S. and Abu Hashish, H. M. 2017. Comparison of Different Methods for Producing Bio Oil from Egyptian Jatropha Seeds. Biofuels.

DOI: http://doi.org/10.1080/17597269.2017.1387748.

Nzikou, J.M., Matos, L., Mbemba, F., Ndangui, C.B., Pambou-Tobi, N.P.G., Kimbonguila, A., Silou, T., Linder, M. and Desobry, S. 2009. Characteristics and Composition of Jatropha Curcas Oils, Variety Congo-Brazzavile. Research Journal of Applied Sciences, Engineering and Technology. 1(3): 154-159.

Izzatie, N.I., Basha, M.H., Uemura, Y., Hashim, M.S.M., Afendi, M. and Mazlan, M.A.F. 2019. Co-Pyrolysis of Rubberwood Sawdust (RWS) and Polypropylene (PP) in A Fixed Bed Pyrolyzer. Journal of Mechanical Engineering and Sciences. 13(1): 4636-4647.

DOI: http://doi.org/10.15282/jmes.13.1.2019.20.0390.

Kaisan, M. U., Pam, G. Y., Kulla, D. M. and Kehinde, A. J. 2014. Effects of Oil Extraction Methods on Bio-Diesel Production from Wild Grape Seeds: A Case Study of Soxhlet Extraction and Mechanical Press Engine Driven Expeller Methods. Journal of Alternate Energy Sources and Technologies. 6(1): 35-40.

DOI: http://doi.org/10.37591/joaest.v6i1.2101.

Pramanik, K. 2003. Properties and Use of Jatropha Curcas Oil and Diesel Fuel Blends in Compression Ignition Engine. Renewable Energy. 28: 239-248.

DOI: http://doi.org/10.1016/S0960-1481(02)00027-7.

Naimah, D. and Morgunova, M. 2018. Analysis of Palm-Oil-Based Biodiesel in Indonesia Using Technological Innovation System Approach. In ASTECHNOVA 2017. E3S Web of Conferences. 43: 01007.

DOI: http://doi.org/10.1051/e3sconf/20184301007.

Mayasari, F. and Dalimi, R. 2019. Fuel Oil Supply Demand Projection and Planning in Indonesia Using System Dynamics Modeling. International Journal of Smart Grid and Clean Energy. 8(1): 11-21.

DOI: http://doi.org/10.12720/sgce.8.1.11-21.

Tahery, R. 2017. Surface Tension and Density of Mixture of m-xylene + n-alkane at 293.15 K: Analysis Under the Extended Langmuir and Shereshefsky Models. Journal of Chemical Thermodynamics. 106: 95-103.

DOI: http://dx.doi.org/10.1016/j.jct.2016.11.018.

Maina, P. 2014. Investigation of Fuel Properties and Engine Analysis of Jatropha Biodiesel of Kenyan Origin. Journal of Energy in Southern Africa. 25(2): 107-116.

DOI: http://doi.org/10.17159/2413-3051/2014/v25i2a2677.

Chauhan, B.S., Kumar, N. and Cho, H.M. 2012. A Study on The Performance and Emission of a Diesel Engine Fueled with Jatropha Biodiesel Oil and Its Blends. Energy. 37: 616-622.

DOI: http://doi.org/10.1016/j.energy.2011.10.043.

Silitonga, A. S., Hassan, M. H., Ong, H. C. and Kusumo, F. 2017. Analysis of the Performance, Emission and Combustion Characteristics of a Turbocharged Diesel Engine Fuelled with Jatropha curcas Biodiesel-Diesel Blends using Kernel-Based Extreme Learning Machine. Environmental Science and Pollution Research. 24: 25383-25405.

DOI: http://doi.org/10.1007/s11356-017-0141-9.

Badan Standardisasi Nasional Indonesia (National Standardization Agency of Indonesia). 2015. Standar Nasional Indonesia (Indonesian Nasional Standard) Biodiesel SNI 7182:2015.

Kian, K. and Scurto, A.M. 2018. Viscosity of Compressed CO2-Saturated n-alkanes: CO2/n-hexane, CO2/n-decane, and CO2/n-tetradecane. The Journal of Supercritical Fluids. 133: 411-420.

DOI: http://doi.org/10.1016/j.supflu.2017.10.030.

Candeia, R. A., Silva, M. C. D., Carvalho Filho, J. R., Brasilino, M. G. A., Bicudo, T.C., Santos, I. M. G. and Souza, A.G. 2009. Influence of Soybean Biodiesel Content on Basic Properties of Biodiesel-Diesel Blends. Fuel. 88: 738-743.

DOI: http://doi.org/10.1016/j.fuel.2008.10.015.

Prodhan A., Hasan, M. I., Sujan, S. M. A., Hossain, M., Quaiyyum, M. A. and Ismail, M. 2020. Production and Characterization of Biodiesel from Jatropha (Jatropha curcas) Seed Oil Available in Bangladesh. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. In-Press.

DOI: http://doi.org/10.1080/15567036.2020.1851819.

Rajak, U., Chaurasiya, P.K., Nashine, P., Verma, M., Kota, T. R. and Verma, T. N. 2020. Financial Assessment, Performance and Emission Analysis of Moringaoleifera and Jatropha curcas Methyl Ester Fuel Blends in a Single-Cylinder Diesel Engine. Energy Conversion and Management. 224: 113362.

DOI: http://doi.org/10.1016/j.enconman.2020.113362.

Chen, W., Zhao, Z. and Yin, C. 2010. The Interaction of Waxes with Pour Point Depressants. Fuel. 89: 1127-1132.

DOI: http://doi.org/10.1016/j.fuel.2009.12.005.

Khethiwe, E., Clever, K. and Jerekias, G. 2020. Effects of Fatty Acids Composition on Fuel Properties of Jatropha Curcas Biodiesel. Smart Grid and Renewable Energy. 11: 165-180.

DOI: http://doi.org/10.4236/sgre.2020.1110010.

Sharma Dugala, N., Goindi, G.S. and Sharma, A. 2020. Evaluation of Physicochemical Characteristics of Mahua (Madhuca indica) and Jatropha (Jatropha curcas) dual Biodiesel Blends with Diesel. Journal of King Saud University – Engineering Sciences. In-press.

DOI: http://doi.org/10.1016/j.jksues.2020.05.006.

De, B. K. and Bhattacharyya, D. K. 1999. Biodiesel from Minor Vegetable Oils Like Karanja Oil and Nahor Oil. Fett/Lipid. 101(10): 404-406.

DOI: http://doi.org/10.1002/(SICI)1521-4133(199910)101:10%3C404::AID-LIPI404%3E3.0.CO;2-K.

Shivani, P., Khushbu, P., Faldu, N., Thakkar, V. and Shubramanian, R.B. 2011. Extraction and Analysis of Jatropha curcas L. Seed Oil. African Journal of Biotechnology. 10(79): 18210-18213.

DOI: http://doi.org/10.5897/AJB11.776.

Vu, D. N. and Lim, O. 2019. Ignition and Combustion Characteristics of Gasoline-biodiesel Blend in a Constant Volume Chamber: Effects of the Operation Parameters. Fuel. 255: 115764.

DOI: http://doi.org/10.1016/j.fuel.2019.115764.

Canesin, E. A., Oliveira, C. C., Matsushita, M., Dias, L. F., Pedrão, M. R. and Souza, N. E. 2014. Characterization of Residual Oils for Biodiesel Production. Electronic Journal of Biotechnology. 17: 39-45.

DOI: http://doi.org/10.1016/j.ejbt.2013.12.007.

Cataluña, R. and Silva, R. 2012. Effect of Cetane Number on Specific Fuel Consumption and Particulate Matter and Unburned Hydrocarbon Emissions from Diesel Engines. Journal of Combustion. 738940.

DOI: http://doi.org/10.1155/2012/738940.

Ahmed, S. T. and Chaichan, M. T. 2012. Effect of Fuel Cetane Number on Multi-Cylinders Direct Injection Diesel Engine Performance and Exhaust Emissions. Al-Khwarizmi Engineering Journal. 8(1): 65-75.

Rahman, M. M., Hamada, K. I., Noor, M. M., Bakar, R. A., Kadirgama, K. and Maleque, M. 2010. In-Cylinder Heat Transfer Characteristics of Hydrogen Fueled Engine: A Steady State Approach. American Journal of Environmental Sciences. 6(2): 124-129.

DOI: http://doi.org/10.3844/ajessp.2010.124.129.




How to Cite

Anggono, W., Noor, M. M., Liao, S., Sanka, K., Gotama, G. J., Sutrisno, & Suprianto, F. D. (2022). EFFECTS OF EXTRACTION METHODS ON THE FUEL CHARACTERISTICS AND DIESEL ENGINE PERFORMANCES OF JATROPHA CURCAS BIODIESEL. Jurnal Teknologi, 84(4), 29-39. https://doi.org/10.11113/jurnalteknologi.v84.15079



Science and Engineering