• Mohd Faizol Abdullah Advanced Devices Lab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia https://orcid.org/0000-0001-6911-0716
  • Siti Aishah Mohamad Badaruddin Advanced Devices Lab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia
  • Mohd Rofei Mat Hussin Advanced Devices Lab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia
  • Mohd Ismahadi Syono Advanced Devices Lab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia




Reduced graphene oxide, thermal interface material, heat spreader, thermal management, power devices


Thermally conductive reduced graphene oxide (rGO) is desirable for removing generated heat during the operation of a power device. Excessive heat accumulation results in device failure. In this article, the performance of rGO as a thermal interface material (TIM) and heat spreader on Si substrate was evaluated using a custom build thermal test setup. By a simple drop-casting of graphene oxide (GO) on Si followed by 700 oC thermal reduction, a hybrid film of GO (electrical insulator) and rGO (thermal conductor) was obtained. This was verified by Raman spectra and surface morphological image. Approximately 300 nm-thick rGO film prepared from 4-times drop-casting of GO exhibited the highest performance as a TIM and heat spreader. The heating rate of Si increased from 14.85 oC/W to 18.37 oC/W due to the improved heat transfer from the heater into the Si substrate. The experimental results endorsed the effectiveness of rGO as a thermal solution and verified the capability of the thermal test setup as a thermal simulation of a high-power device.


Mat Hussin, M. R., Ramli, M. M., Wan Sabli, S. K., Md Nasir, I., Syono, M. I., Wong, H. Y., and Zaman, M. 2017. Fabrication and Characterization of Graphene-on-Silicon Schottky Diode for Advanced Power Electronic Design. Sains Malays. 46(7): 1147–1154.

Mohd Saman, R., Wan Sabli, S. K., Mat Hussin, M. R., Othman, M. H., Mohammad Haniff, M. A. S., and Syono, M. I. 2019. High Voltage Graphene Nanowall Trench MOS Barrier Schottky Diode Characterization for High Temperature Applications. Appl. Sci. 9(8): 1587.

Lv, L., Dai, W., Li, A., and Lin, C. T. 2018. Graphene-Based Thermal Interface Materials: An Application-Oriented Perspective on Architecture Design. Polymers 10(11): 1201.

Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P. Nika, D. L., Balandin, A. A., Bao, W., Miao, F., and Lau, C. N. 2008. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Appl. Phys. Lett. 92: 151911.

Zeng, Y., Li, T., Yao, Y., Li, T., Hu, L., and Marconnet, A. 2019. Thermally Conductive Reduced Graphene Oxide Thin Films for Extreme Temperature Sensors. ‎Adv. Funct. Mater. 29(27): 1901388.

Yan, Z., Liu, G., Khan, J. M., and Balandin, A. A. 2012. Graphene Quilts for Thermal Management of High-Power GaN Transistors. Nat. Commun. 3: 827.

Subrina, S., Kotchetkov, D., and Balandin, A. A. 2009. Heat Removal in Silicon-on-Insulator Integrated Circuits with Graphene Lateral Heat Spreaders. IEEE Electron Device Lett. 30(12): 1281–1283.

Hanifah, M. F. R., Jaafar, J., Aziz, M., Ismail, A. F., Rahman, M. A., and Othman, M. H. D. 2015. Synthesis of Graphene Oxide Nanosheets via Modified Hummers’ Method and its Physicochemical Properties. J. Teknol. 74(1): 189–192.

Cote, L. J., Kim, J., Tung, V. C., Luo, J., Kim, F., and Huang, J. 2011. Graphene Oxide as Surfactant Sheets. Pure Appl. Chem. 83(1): 95–110.

Abdullah, M. F. and Hashim, A. M. 2019. Review and Assessment of Photovoltaic Performance of Graphene/Si Heterojunction Solar Cells. J. Mater. Sci. 54(2): 911–948.

Abdullah, M. F. and Hashim, A. M. 2019. Improved Coverage of rGO Film on Textured Si Inverted Micro Pyramids for Enhancing Photovoltaic of rGO/Si Heterojunction Solar Cell. Mater. Sci. Semicond. Process. 96: 137–144.

Jin, S., Gao, Q., Zeng, X., Zhang, R., Liu, K., Shao, X., and Jin, M. 2015. Effects of Reduction Methods on the Structure and Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films. Diam. Relat. Mater. 58: 54–61.

Jang, W., Bao, W., Jing, L., Lau, C. N., and Dames, C. 2013. Thermal Conductivity of Suspended Few-Layer Graphene by a Modified T-Bridge Method. Appl. Phys. Lett. 103(13): 133102.

Zhang, X., Sun, D., Li, Y., Lee, G. H., Cui, X., Chenet, D., You, Y., Heinz, T. F., and Hone, J. C. 2015. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. ACS Appl. Mater. Interfaces 7(46): 25923–25929.

Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A. S., Alemany, L. B., Lu, W., and Tour, J. M. 2010. Improved Synthesis of Graphene Oxide. ACS Nano 4(8): 4806–4814.

Abdullah, M. F., Abd Rahman, S. F. and Hashim, A. M. 2019. Investigation on Transition Diode Properties of rGO-GO/n-Si Heterojunction. Phys. Status Solidi A 216(14): 1900064.

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K. 2006. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97(18): 187401.

Abdullah, M. F., Soriadi, N., Md Yakin, F. S., Mohamad Badaruddin, S. A., and Syono, M. I. 2020. Tuning the Optoelectronic Properties of the rGO-AuNPs Hybrid Film by Pre-Decoration and AuNPs-Assisted Thermal Reduction. Mater. Sci. Semicond. Process. 112: 105017.

Mat Hussin, M. R., Mohamad Badaruddin, S. A., Mohd Nor, N. M. R., and Hamzah, M. H. A. 2019. Ultrasonic Atomization of Graphene Derivatives for Heat Spreader Thin Film Deposition on Silicon Substrate. Materials Today: Proceedings 7(2): 763–769.

Li, X., Fang, M., Wang, W., Guo, S., Liu, W., Liu, H., and Wang, X. 2016. Graphene Heat Dissipation Film for Thermal Management of Hot Spot in Electronic Device. J. Mater. Sci.: Mater. Electron. 27: 7715–7721.

Deng, D. and Xiong, X. 2018. Free-Standing Paper-Like Heat Spreading Films Based on Graphene Oxide-Aromatic Molecule Composites. J. Mater. Sci.: Mater. Electron. 29: 3050–3055.





Science and Engineering