CONJUGACY CLASS SIZES FOR SOME 2-GROUPS OF NILPOTENCY CLASS TWO

Authors

  • SHEILA ILANGOVAN Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • NOR HANIZA SARMIN Department of Mathematical Sciences, Faculty of Science and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v57.1519

Keywords:

Ciri tak terturunkan, kelas konjugat, berpenjana–2, kumpulan–2

Abstract

Dalam kertas ini, kita menyelidik ciri tak terturunkan dan panjang kelas konjugat bagi kumpulan–2 berpenjana–2 dengan kelas nilpoten 2. Panjang kelas konjugat bagi elemen x dalam kumpulan G adalah peringkat xG di mana xG ialah kelas konjugat yang mengandungi x. Kajian ini adalah berdasarkan pada klasifikasi kumpulan yang diberikan oleh Magidin pada tahun 2006. Kita akan membuktikan bahawa panjang kelas konjugat bagi G ialah 2Ï di mana 0 <= Ï <= γdan |G'| = 2γ.

References

R. Baer, Group Elements of Prime Power Index. 1953. Trans. Amer. Math. Soc. 75: 20-47.

N. Ito. on Finite Groups with Given Conjugate Types. I. 1953. Nagoya Math. J. 6: 17-28.

N. Ito. on Finite Groups with Given Conjugate Types. II. 1970. Osaka J. Math. 7: 231-251.

N. Ito. on Finite Groups with Given Conjugate Types. III. 1970. Math. Z. 117: 267-271.

A. R. Camina. Arithmetical Conditions on the Conjugacy Class Numbers of a Finite Group. 1972. J. London Math. Soc. 5(2): 127-132.

A. R. Camina. Conjugacy Classes Of Finite Groups And Some Theorems of N. Ito. 1973. J. London Math. Soc. 6(2): 421-426.

A. R. Camina. 1974. Finite Groups of Conjugate Rank 2. Nagoya Math. J. 58: 47-57.

D. Chillag and M. Herzog. On the Length of the Conjugacy Classes of Finite Groups. 1990.J. Algebra. 131: 110-125.

G. A. How and F. C. Chuang. 1999. Groups with Small Conjugacy Classes. Tamkang Journal Of Mathematics. 30(2): 127-131.

A. Magidin. Capable 2-generator 2-groups of Class Two. 2006. Comm. Algebra. 34(6): 2183-2193.

J. G. Rainbolt and J. A. Gallian. 2003. A Manual to be Used with Contemporary Abstract Algebra. Houghton Mi_in Company.

J. J Rotman. 1994. An Introduction to the Theory of Groups. New York: Springer-Verlag. Inc.

I. M Isaacs. 1976. Character Theory of Finite Groups. New York, San Francisco, London: Academic Press.

S. Ilangovan and N. H. Sarmin. The Exact Number of Conjugacy Classes in Some Finite 2-groups.

Indian Journal of Pure and Applied Mathematic. Submitted in 2011.

A. Ahmad. 2008. The Exact Number of Conjugacy Classes for 2-Generator p-Groups of Nilpotency Class 2. Ph.D Thesis, Universiti Teknologi Malaysia, Malaysia.

Downloads

Published

2012-02-15

How to Cite

CONJUGACY CLASS SIZES FOR SOME 2-GROUPS OF NILPOTENCY CLASS TWO. (2012). Jurnal Teknologi (Sciences & Engineering), 57(1). https://doi.org/10.11113/jt.v57.1519