Numerical Investigation of Unsteady Laminar in Oscillated Lid–Driven Cavity Flow

Authors

  • Arman Safdari Department of Thermofluid, Faculty of Mechanical Engineering, UniversitiTeknologi Malaysia 81310 UTM Skudai, Johor, Malaysia
  • Ali Akbari Sheldareh Department of Thermofluid, Faculty of Mechanical Engineering, UniversitiTeknologi Malaysia 81310 UTM Skudai, Johor, Malaysia
  • Mohammad Poortoosi Department of Thermofluid, Faculty of Mechanical Engineering, UniversitiTeknologi Malaysia 81310 UTM Skudai, Johor, Malaysia
  • Nor Azwadi Che Sidik Department of Thermofluid, Faculty of Mechanical Engineering, UniversitiTeknologi Malaysia 81310 UTM Skudai, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v58.1541

Keywords:

Cavity flow, Reynolds number, lid frequency, lattice Boltzmann

Abstract

This article reports the flow characteristics in an oscillated lid–driven cavity. The mesoscale numerical scheme of the multiple relaxation time lattice Boltzmann method is applied to solve for the fluid flow equation. Our predicted results revealed that the flow behavior is critically dependent on the dimensionless Reynolds number and frequency of the oscillated top lid of the cavity.

References

R. D. Mills. 1965. On the Closed Motion of a Fluid in a Square Cavity. J. Royal Aero. Soc.69(1): 116–120.

J. R. Koseff, and R. L. Street. Visualization Studies of a Shear Driven Three-dimensional Recirculating Flow. J. Fluids Eng. 106(1): 21–29.

C. Migeon, G. Pineau, and A. Texier. 2003. Three-dimensionality Development Inside Standard Parallel Pipe Lid-Driven Cavities at Re = 1000. J. Fluids and Struc. 17 (1): 717–738.

O. J. Ilegbusi, and M. D. Mat. 2000. A Comparison of Predictions and Measurements of Kinematic Mixing of Two Fluids in a 2D Enclosure. App. Math. Modelling. 24(3): 199–213.

M. J. Vogel, A. H. Hirsa and J. M. Lopez. 2003. Spatio-temporal 17.Dynamics of a Periodically Driven Cavity Flow. J. Fluid Mech. 478(1): 197–226.

N. A. C. Sidik and S. M. R. Attarzadeh. 2011. An Accurate Numerical Prediction of Solid Particle Fluid Flow in a Lid-Driven Cavity. Intl. J. Mech. 5(3): 123–128.

S. L. Li, Y. C. Chen, and C. A. Lin. 2011. Multi Relaxation Time Lattice Boltzmann Simulations of Deep Lid Driven Cavity Flows at Different Aspect Ratios. Comput. & Fluids. 45(1): 233–240.

O. Aydin, A. Ünal, and T. Ayhan. 1999. Natural Convection in Rectangular Enclosures Heated from One Side and Cooled from the Ceiling.Intl. J. Heat and Mass Trans. 42(13): 2345–2355.

M. A. Mussa, S. Abdullah, C. S. Nor Azwadi, and N. Muhamad. 2011. Simulation of Natural Convection Heat Transfer in an Enclosure by The Lattice-Boltzmann Method.Comput. & Fluids. 44(1): 162–168.

U. Ghia, K. N Ghia, and C. T. Shin. 1982. High-Re Solutions for IncompressibleFlow using the Navier-Stokes Equations and a Multigrid Method. J. Comput. Phys. 48(3): 387–411.

Downloads

Published

2012-07-15

How to Cite

Numerical Investigation of Unsteady Laminar in Oscillated Lid–Driven Cavity Flow. (2012). Jurnal Teknologi (Sciences & Engineering), 58(2). https://doi.org/10.11113/jt.v58.1541