Antibiotics as Microbial Secondary Metabolites: Production and Application

Authors

  • Hassan M. Awad Institute of Bioproduct Development, UniversitiTeknologi Malaysia, 81310 UTM Joho Bahru, Johor, Malaysia
  • Kamal Y. I. EL–Shahed Chemistry of Natural and Microbial Products Department, National Research Centre (NRC), Dokki, Cairo, Egypt
  • Ramlan Aziz Institute of Bioproduct Development, UniversitiTeknologi Malaysia, 81310 UTM Joho Bahru, Johor, Malaysia
  • Mohamed Roji Sarmidi Institute of Bioproduct Development, UniversitiTeknologi Malaysia, 81310 UTM Joho Bahru, Johor, Malaysia
  • Hesham A. El–Enshasy Bioprocess Development Dept., Genetic Eng. and Biotechnol. Res. Inst., City for Scientific Research, New Burg Al–Arab, 21934 Alexandria, Egypt

DOI:

https://doi.org/10.11113/jt.v59.1593

Keywords:

Antibiotics, classification, resistance to antibiotics, determination methods, mode of action, roducers strain

Abstract

Of all the microbial products manufactured commercially, antibiotics are the most important.Hundreds of antibiotics, a fraction of about 7000 antibiotics known so far, are commercially manufactured using microbial fermentation. In history, the first antibiotic discovered was used for controlling infections, but today more antibiotics are being used for other therapeutic applications. Being the most studied secondary metabolites through the history, antibiotics possess other pharmacological characteristics useful in the medical field. Therefore, the aim of this study is to present a review on antibiotics that include antibiotics definition, classification, mode of actions, uses, antibiotic resistance, side effects, type of antibiotics, metabolisms and determination methods of antibiotics.

References

Navon-Venezia, S., R. Feder, L. Gaidukov, Y. Carmeli, and A. Mor. 2002. Antibacterial Properties of Dermaseptins4 Derivatives with in Vivo Activity. Antimicrob Agents Chemother. 46(3): 689–94.

Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural Products in Drug Discovery and Development. Journal of Natural Products. 60(1): 52–60.

Scholar, E. M. and W. B. Pratt. 2000. The Antimicrobial Drugs. 2nd Edition. Oxford University Press, Oxford, UK.

Demain, A.L. 1999. Pharmaceutically Active Secondary Metabolites of Microorganisms. Applied Microbiology and Biotechnology.52(4): 455–63.

Demain, A.L. and A.Fang, 2000. The Natural Functions of Secondary Metabolites. Advances in Biochemical Engineering/Biotechnology. 69(1): 1–39.

Kieslich, K. 1986. Production of Drugs by Microbial Biosynthesis and Biotransformation. Possibilities, Limits and Future Developments. 1st Communication. Arzneimittelforschung. 36(4): 774–8.

Wells, J. S., J. C. Hunter, G. L. Astle, J. C. Sherwood, C. M. Ricca,W. H. Trejo, D. P. Bonner, and R. B. Sykes. 1982. Distribution of Beta-Lactam and Beta-lactone Producing Bacteria in Nature. Journal Antibiotic (Tokyo). 35(7): 814–21.

Aharonowitz, Y. 1980. Nitrogen Metabolite Regulation of Antibiotic Biosynthesis. Annual Review of Microbiology. 34(1): 209–33.

Goodman, R.N. 1959. The Influence of Antibiotics on Plants and Plant Disease Control. In: Antibiotics: Their Chemistry and Non-medical Uses. H.S. Goldberg, Ed. D. Vannostr And And Company, Inc. Princeton, NJ. 322–448.

O. muraS. 1992. Trends in the Search for Bioactive Microbial Metabolites. Journal of Industrial Microbiology.10(3–4): 135–156.

Zedan, H. 1993. The Economic Value of Microbial Diversity. BioTechnology. 43: 178–185.

Miyadoh, S. 1993. Research on Antibiotic Screening in Japan Over the Last Decade: A Producing Microorganisms Approach. Actinomycetologica. 9: 100–106.

Bérdy, J. 2005. Bioactive Microbial Metabolites, A Personal View. Journal of Antibiotics. 58(1): 1–26.

Jurgens, M. H. 1997. Animal Feeding and Nutrition. Eighth Edition. Kendall/Hunt Publishing, Company, Dubuque, IA.

Scholar, E. M. and W. B. Pratt. 2000. The Antimicrobial Drugs. 2nd edition. Oxford University Press, Oxford, UK.

Garrod, L. P. and F. O'Grady. 1971. Antibiotics and Chemotherapy. 3d ed.).

Vining, L.C. 1990. Functions of Secondary Metabolites. Annual Review of Microbiology. 44: 395–427.

Roessner, C.A. and A.I. Scott. 1996. Genetically Engineered Synthesis of Natural Products: From Alkaloids to Corrins. Annual Review of Microbiology. 50(1): 467–90.

DeLorenzo, V. 1985. Factors Affecting Microcine492 Production. Journal of Antibiotic (Tokyo). 38(3): 340–45.

Lazzarini A, L.Cavaletti,G. Toppo and F. Marinelli. 2000. Rare Genera of Actinomycetes as Potential Producers of New Antibiotics. Antonie Van Leeuwenhoek. 78(3–4): 399–405.

Metsä-Ketelä M, V.Salo, L.Halo, A.Hautala, J.Hakala, P.Mäntsälä andK.Ylihonko. 1999. An Efficient Approach for Screening Minimal PKS Genes from Streptomyces. FEMS Microbiology Letters. 180(1): 1–6.

Nakano, T., K. Miyake, M. Ikeda, T. Mizukami, R. Katsumata. 2000. Mechanism of the Incidental Production of a Melanin-like Pigment During 6-Demethylchlortetracycline Production in Streptomyces Aureofaciens. Applied and Environmental Microbiology. 66(4): 1400–1404.

Parekh, S., V. A.Vinci, and R. J. Strobel. 2000. Improvement of Microbial Strains and Fermentation Processes. Applied Microbiology and Biotechnology. 54(3): 287–301.

Zweerink, M.M. and A. Edison. 1987. Difficidin and Oxydifficidin: Novel Broad Spectrum Antibacterial Antibiotics Produced by Bacillus Subtilis. III. Mode of Action of Difficidin. Journal of Antibiot (Tokyo). 40(12): 1692–97

Pinchuk, I. V., P. Bressollier, B. Verneuil, B. Fenet, I. B. Sorokulova, F. Megraudand, M. C.Urdaci. 2001. In Vitro Anti-helicobacter Pylori Activity of the Probiotic Strain Bacillus Subtilis3 is due to Secretion of Antibiotics. Antimicrob Agents Chemother. 45(11): 3156–61.

Reichenbach, H., K. Gerth, H. Irschik, B. Kunzeand G. Hofle. 1988. Myxobacteria: A Source of New Antibiotics. Trends Biotechnology. 6: 115–121.

Parekh, S., V. A Vinci and R. J. Strobel. 2000. Improvement of Microbial Strains and Fermentation Processes. Applied Microbiology and Biotechnology.54(3): 287–301.

Bunch, A. W. and R. E. Harris 1986. The Manipulation of Micro-Organisms for the Production of Secondary Metabolites. Biotechnology & Genetic Engineering Reviews.4: 117–144.

Aharonowitz, Y, A.L. Demain. 1978. Carbon Catabolite Regulation of Cephalosporin Production in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy. 14 (2): 159–164.

McDowall, K. J., A. Thamchaipenet and I. S. Hunter. 1999. Phosphate Control of Oxytetracycline Production by Streptomyces Rimosus is at the Level of Transcription from Promoters Overlapped by Tandem Repeats Similar to Those of the DNA-Binding Sites of the Ompr Family. Journal of Bacteriology. 181(10): 3025–3032.

Horinouchi, S. and T. Beppu. 1992. Regulation of Secondary Metabolism and Cell Differentiation in Streptomyces: A-Factor as a Microbial Hormone and the Afsrprotein as a Component of a Two-Component Regulatory System. Gene. 115 (1–2): 167–172.

Bentley S. D, K. F. Chater, A. -M.Cerdeño-Tárraga, G. L. Challis, N. R. Thomson, K. D. James and et al. 2002. Complete Genome Sequence of the Model Actinomycete Streptomyces coelicolor A3(2). Nature. 417(6885): 141–147.

Boehm, M., C.Peter, Fuenfschilling, M. Krieger, E. Kuestersand F.Struber. 2007. An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part I Org. Process Research & Development. 11(3): 336–340.

Stephanie, P. 2007. The pharaohs' Pharmacists. New Scientist. 15 December 2007. 40–43.

Kalant, H. 1965. The Pharmacology of Semisynthetic Antibiotics. The Canadian Medical Association Journal. 93(16): 839–843.

Vandamme, E.J.1984. Antibiotic Search and Production: An Overview. In: Vandamme EJ (Ed) Biotechnology Of Industrial Antibiotics. New York: Marcel Dekker. 3–32.

Jawetz, E. 1975 Synergism and Antagonism among Antimicrobial drugs-A(1975).Western Journal of Medicine. 123: 87–91.

Patrick, R., M, Rosenthal S. K. and A. P. Michael. Medical Microbiology. 6th Edition 2009. ISBN: 978-0-323-05470-6 960.

Chait, R., K. Vetsigian and R.Kishony. 2012. What counters antibiotic resistance in nature? Naturechemical Biology. Vol. 8.2-5.www.nature.com/naturechemicalbiology.

Torella, J. P., R. Chait and R. Kishony. 2010. Optimal Drug Synergy in Antimicrobial Treatments. Pols Computational Biology.6(6): 1–9.

Levy, S. B. 1992. The Antibiotic Paradox: How Miracle Drugs Are Destroying the Miracle. Plenum Press, New York, NY.

Woodford, N. and M.J. Ellington, 2007. The Emergence of Antibiotic Resistance by Mutation. Clinical Microbiology and Infection. 13(1): 5–18.

Bennett, P.M. 2008. Plasmid Encoded Antibiotic Resistance: Acquisition and Transfer of Antibiotic Resistance Genes in Bacteria. British Journal of Pharmacology. 153(3): 347–357.

Zagury, F.T.R. 2006. The role of antibiotics in immunosuppressive Diseases. Advances in Pork Production. 17: 161–163.

Stetsenko, O. N., I. A. Poberri, M. I. Ul’inaov, D. P. Lindner. 1981. Effect of Tetracycline on the Immune and Hematopoietic System on Infant Rabbits. Anibiotiki. 26: 11: 856–860.

Bush,K., P. Courvalin, D. Dantasand et al. 2011. Tackling Antibiotic Resistance. Nature Reviews/ Microbiology.9: 894–896.

Singleton P.2004. Bacteria in Biology, Biotechnology and Medicine 6th Edition. Man Against Bacteria Chapt. 15: 450–457.

Waksman, S. A. and H. C. Rerlly.1945. Agar-streak Method for Assaying Antibiotic Substances. Industrial and engineering chemistry. Analytical Edition. 17 (9): 556–558.

Cortese, F, J. M. Mcguire, and T. V. Pagxe. 1949. Some New Procedures and Instruments Useful for Microbiological Antibiotic Testing by Diffusion Methods. I. A New Zone Reader. Journal of the American Pharmaceutical Association. 88(18): 459–462.

Masuyaia, M. 1949. On a One-Dimensional Diffusion Method of Assaying Antibiotic Substances and Its Fundamental Formulas. Biometrics. 5(4): 317–329.

Florey, H. W., E. Chain, N. G. Heatley, M. A. Jenings, A. G. Sanders, E. P. Abraham and M. E. Florey, 1950. Antibiotics: a Survey of

Penicillin, Streptomycin and Other Antimicrobial Substances from Fungi, Actinomycetes, Bacteria and Plants. The Journal of the American Medical Association. 143(13): 1217.

Miyatura, S. 1951. On the Influence of Ph of Sample on the Cup Assay of Antibiotics. Journal of Antibiotics [Japan] 4: 290–295.

Ehrlich, J., W. P. Iverson. and A. Kohberger. 1951. Agar Diffusion Methods for the Assay of Viomycin. Journal of Antibiotics & Chemotherapy. 1: 211–216.

Eisman, P. C., R. L. Mayer, K. Aronson and W. S. Marsh. 1946. Resistant Microorganisms and Their Use for the Classification of Antibacterial Substances. Journal of Bacteriology. 52: 501-502.

Eisenian, W. and C. E. Bricker. 1949. Spectrophotometric method for Determining Streptomycin. Analytical Chemistry. 21(12): 1507–1508.

Eiery, W. B. and A. D. Walker. 1949. Colorimetric Determination of Streptomycin B (Mannosidostreptomycin). Analyst. 74: 455–457.

Gavin, J. 1957a. Microbiological Process Report. Analytical Microbiology. III. Turbidimetric Methods. Applied Microbiology. 5(4): 235–243.

Simon, J.S. and E.J. Yin. 1970. Microbioassay of Antimicrobial. Applied Microbiology. 19(4): 573–579.

Gavin, J. 1957b. Microbiological Process Report. Analytical Microbiology. II. The Diffusion Methods. Applied of Microbiology. 5(1): 25–33.

Niedermayer, A. O., F. M. Russo-Alesi, C. A. Lendzian and J. M. Kelly. 1960. Automated System for the Continuous Determination of Penicillin in Fermentation Media Using Hydroxylaminereagent. Analytical Chemistry. 32(6):664–666.

Kuzel, N. R. and F. W. Kavanaugh. 1971. Automated System for Microbiology. It Construction of System and Evaluation of Antibiotics and Vitamins. Journal of Pharmaceutical Sciences. 60(4): 767–773.

White A. R, C. Kaye, J. Poupard, R. Pypstra, G. Woodnutt and B. Wynne. 2004. Augmentin® (amoxicillin/clavulanate) In Treatment of Community-acquired Respiratory Tract Infection: A Review of the Continuing Development of an Innovative Antimicrobial Agent. Journal of Antimicrobial Chemotherapy. 53(S1): i3–i20

Witte, W. 1998. Medical Consequences of Antibiotic Use in Agriculture. Science. 279(5353): 996–997.

Downloads

Published

2012-09-15

How to Cite

Antibiotics as Microbial Secondary Metabolites: Production and Application. (2012). Jurnal Teknologi (Sciences & Engineering), 59(1). https://doi.org/10.11113/jt.v59.1593