An Approach to Brain Tumor MR Image Detection and Classification using Neuro Fuzzy

Authors

  • Mohd Ariffanan Mohd Basri Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Fauzi Othman Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abdul Rashid Husain Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v61.1627

Keywords:

ANFIS, MRI, brain tumor, segmentation, classification

Abstract

Segmentation is an important step in many applications, being also important in those that deal with medical images. Thresholding is one of the most important and used techniques for image segmentation. Some segmentation techniques based on thresholding are performed in order to segment the tumors. The conventional method used in medicine for brain magnetic resonance (MR) images classification and tumors detection is by human inspection. The use of artificial intelligent techniques, for instance, neural networks, fuzzy logic and neuro fuzzy have shown great potential in this field. Hence, in this study, the neuro fuzzy system or ANFIS is applied for classification purposes. ANFIS is applied to classify the abnormal brain based on the location of the tumors. The performance of the ANFIS classifier is evaluated in terms of training performance and classification accuracy and the results confirmed that the proposed ANFIS classifier has potential in classifying the tumors.

References

C. Lee, S. Huh, T. A. Ketter, M. Unser. 1998. Comput. Biol. Med. 28: 309.

M. S. Atkins, B. T. Mackiewich. 1998. IEEE T. Med. Imaging. 17: 98.

D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, R. M. Leahy. 2001. Neuroimage. 13: 856.

L. Kuncheva, F. Steimann. 1999. Artif. Intell. Med. 16: 121.

J. S. R. Jang. 1993. IEEE T. Syst. Man Cy. 23: 665.

S. Y. Belal, A. F. G. Taktak, A. J. Nevill, S. A. Spencer, D. Roden, S. Bevan. 2002. Artif. Intell. Med. 24: 149.

I. Virant-Klun, J. Virant. 1999. Comput. Biomed. Res. 32:305.

A. Abraham, B. Nath. 2000. A Review of a Decade of Research, Technical Report, School of Computing and Information Technology. Monash University. Australia.

N. Kasabov. 1996. Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. MIT Press. Cambridge.

R. J. Oweis, M. J. Sunna. 2005. J. Electr. Eng. 56: 146.

N. Benamrane, A. Aribi, L. Kraoula. 2006. IEEE Proc. Geom. Model. Imaging.

R. Castellanos, S. Mitra. 2000. IEEE Symp. Comput.-Based Med. Syst.

C. M. Hong, C. M. Chen, S. Y. Chen, C. Y. Huang. 2006. IEEE Int. Joint Conf. Neural Networks.

F. Frattale Mascioli, G. Martinelli. 1998. Signal Process. 64: 347.

J. S. R. Jang. 1996. Proc. Fifth IEEE Int. Conf. 12: 1493.

M. Panella, A. Rizzi, F. M. F. Mascioli, G. Martinelli. 2001. IFSA World Congress and 20th NAFIPS Int. Conf. 1: 340.

J. Jang, C. Sun, E. Mizutani. 1997. Neuro-Fuzzy and Soft Computing. New Jersey: Prentice Hall. USA.

S. L. Chiu. 1994. J. Intell. Fuzzy Syst. 2: 267.

Downloads

Published

2013-02-15

Issue

Section

Science and Engineering

How to Cite

An Approach to Brain Tumor MR Image Detection and Classification using Neuro Fuzzy. (2013). Jurnal Teknologi (Sciences & Engineering), 61(2). https://doi.org/10.11113/jt.v61.1627