• Nabil Hayeemasae ᵃDepartment of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000 Thailand ᵇResearch Unit of Advanced Elastomeric Materials and Innovations for BCG Economy (AEMI), Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand https://orcid.org/0000-0002-9924-582X
  • Kamaruddin Waesateh Islamic Sciences Demonstration School, Faculty of Islamic Sciences, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
  • Siriwat Soontaranon Synchrotron Light Research Institute, Muang District, Nakhon Ratchasima 30000, Thailand
  • Abdulhakim Masa Rubber Engineering & Technology Program, International College, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand https://orcid.org/0000-0002-0577-4844




Natural rubber, Vulcanization systems, Crosslink densities, Network structure, Microstructure


The mechanical properties of natural rubber (NR) vulcanizate depend strongly on several factors, i.e., vulcanization systems and crosslink density. These two parameters are originally from the formulation design of the vulcanizate. To focus more on such details, influences of three different vulcanization systems (sulfur, peroxide, and phenolic resin) with variations in their crosslink densities were studied by focusing on the change of curing properties, crosslink densities, mechanical properties and network structures of the NR vulcanizates. The crosslink density of various vulcanization systems increased with increasing curing promotors, as revealed by temperature scanning stress relaxation measurement. The tensile modulus at 100% strain increased with increasing crosslink density in all systems but the tensile strength varied with the vulcanization systems and degree of crosslink density. At the same crosslink level, the greatest tensile strength was obtained when the sulfur was used as a crosslinker, which was 100% greater than those obtained from peroxide and 200% over phenolic systems. In comparison to the phenolic resin system, sulfur and peroxide crosslink systems had a more uniform distribution of the crosslink network structure. The size of the network structure was found to be independent of the tensile strength. The peroxide system had the most uniform distribution of the crosslink network structure.  


Rao. V., and Johns. J. 2008. Mechanical Properties of Thermoplastic Elastomeric Blends of Chitosan and Natural Rubber Latex. Journal of Applied Polymer Science. 107(4): 2217-2223.

DOI: https://doi.org/10.1002/app.272652.

Li, S. D., Chen, J., Li, L. F., Wang, Z. F., Zhong, J. P., and Yang, L. 2018. Vulcanization Characteristics of Natural Rubber Coagulated by Microorganisms. Rubber Chemistry and Technology. 91(1): 64-78.

DOI: https://doi.org/10.5254/rct.82.83736.

Ehabe, E. E., and Farid, S. A. 2001. Chemical Kinetics of Vulcanisation and Compression Set. European Polymer Journal. 37(2): 329-334.

DOI: https://doi.org/10.1016/S0014-3057(00)00112-9.

Wang, Q. G., Wang, F. L., and Cheng, K. 2009. Effect of Crosslink Density on Some Properties of Electron Beam-irradiated Styrene–butadiene Rubber. Radiation Physics and Chemistry. 78(11): 1001-1005.

DOI: https://doi.org/10.1016/j.radphyschem.2009.06.001.

Zhao, F., Bi, W. N., and Zhao, S. G. 2011. Influence of Crosslink Density on Mechanical Properties of Natural Rubber Vulcanizates. Journal of Macromolecular Science, Part B: Physics. 50(7): 1460-1469.

DOI: https://doi.org/10.1080/00222348.2010.507453.

Masa, A., Soontaranon, S., and Hayeemasae, N. 2020. Influence of Sulfur/Accelerator Ratio on Tensile Properties and Structural Inhomogeneity of Natural Rubber. Polymer (Korea). 44(4): 519-526.

DOI: https://doi.org/10.7317/pk.2020.44.4.519.

Ikeda, Y., Higashitani, N., Hijikata, K., Kokubo, Y., Morita, Y., Shibayama, M., Osaka, N., Suzuki, T., Endo, H., and Kohjiya, S. 2009. Vulcanization: New Focus on a Traditional Technology by Small-Angle Neutron Scattering. Macromolecules. 42(7): 2741-2748.

DOI: https://doi.org/10.1021/ma802730z.

Kruzelak, J. Kvasnicakova, A., and Hudec, I. 2020. Peroxide Curing Systems Applied for Cross-linking of Rubber Compounds based on SBR. Advanced Industrial and Engineering Polymer Research. 3(3): 120-128.

DOI: https://doi.org/10.1016/j.aiepr.2020.05.001.

Shuhaimi, N. H. H., Ishak, N. S., Othman, N., Ismail, H., and Sasidharan, S. 2014. Effect of Different Types of Vulcanization Systems on the Mechanical Properties of Natural Rubber Vulcanizates in the Presence of Oil Palm Leaves-based Antioxidant. Journal of Elastomers & Plastics. 46(8): 747-764.

DOI: https://doi.org/10.1177/0095244313489910.

Fan, R., Zhang, Y., Huang, C., Zhang, Y., Fan, Y., and Sun, K. 2001. Effect of Crosslink Structures on Dynamic Mechanical Properties of Natural Rubber Vulcanizates under Different Aging Conditions. Journal of Applied Polymer Science. 81(3): 710-718.

DOI: https://doi.org/10.1002/app.1488.

de Lima, D. R., da Rocha, E. B. D., de Sousa, A. M. F., da Costa, A. C. A., and Furtado, C. R. G. 2020. Effect of Vulcanization Systems on the Properties of Natural Rubber Latex Films. Polymer Bulletin.

DOI: https://doi.org/10.1007/s00289-020-03291-4.

Osaka, N. Kato, M., and Saito, H. 2013. Mechanical Properties and Network Structure of Phenol Resin Crosslinked Hydrogenated Acrylonitrile-Butadiene Rubber. Journal of Applied Polymer Science. 129(6): 3396-3403.

DOI: https://doi.org/10.1002/app.39010.

Ikeda, Y. Yasuda, Y. Hijikata, K. Tosaka, M. and Kohjiya. S. 2008. Comparative Study on Strain-Induced Crystallization Behavior of Peroxide Cross-Linked and Sulfur Cross-Linked Natural Rubber. Macromolecules. 41(15): 5876-5884.

DOI: https://doi.org/10.1021/ma800144u.

Vennemann, N., Bokamp, K., and Broker, D. 2006. Crosslink Density of Peroxide Cured TPV. Macromolecular Symposia. 245-246(1): 641-650.

DOI: https://doi.org/10.1002/masy.200651391.

Stelescu, M. D. Manaila, E. and Zuga. N. 2011. The Use of Polyfunctional Monomers in the Radical Cure of Chlorinated Polyethylene. Polymer Journal. 43: 792-800.

DOI: https://doi.org/10.1038/pj.2011.53.

Kruzelak, J., Sykora, R., and Hudec, I. 2015. Peroxide Vulcanization of Natural Rubber. Part II: Effect of Peroxides and Co-Agents. Journal of Polymer Engineering. 35(1): 21-29.

DOI: https://doi.org/10.1515/polyeng-2014-0035.

Kruzelak, J. Kvasnicakova, A. Medlenova, E. Dosoudil, R. and Hudec. I. 2019. Application of Peroxide Curing Systems in Cross-Linking of Rubber Magnets Based on NBR and Barium Ferrite. Advances in Materials Science and Engineering. 2019: 1640548

DOI: https://doi.org/10.1155/2019/1640548.

van Duin. M. 2000. The Chemistry of Phenol-formaldehyde Resin Crosslinking of EPDM as Studied with Low-molecular-Weight Models: Part II. Formation of Inert Species, Crosslink Precursors and Crosslinks. Rubber Chemistry and Technology. 73(4): 706-719.

DOI: https://doi.org/10.5254/1.3547615.

van Duin. M. 2002. Chemistry of EPDM Cross-linking. KGK Kautschuk Gummi Kunststoffe. 55: 150-156.

Gonzalez, L. Rodriguez, A. Valentin, J. L. Marcos-Fernandez, A. and Posadas. P. 2005. Conventional and Efficient Crosslinking of Natural Rubber Effect of Heterogeneities on the Physical Properties. KGK Kautschuk Gummi Kunststoffe. 58: 638-646.

Boonstra, B., Cochrane, H., and Dannenberg. E. 1975. Reinforcement of Silicone Rubber by Particulate Silica. Rubber Chemistry and Technology. 48(4): 558-576.

DOI: https://doi.org/10.5254/1.3539660.

Cochrane, H. and Lin, C. 1993. The Influence of Fumed Silica Properties on the Processing, Curing, and Reinforcement Properties of Silicone Rubber. Rubber Chemistry and Technology. 66(1): 48-60.

DOI: https://doi.org/10.5254/1.3538299.

Kucherskii, A. M. 2000. Effect of Chemical And Physical Crosslinks on Cold-resistance of Rubbers. Polymer Testing. 19(4): 445-457.

DOI: https://doi.org/10.1016/S0142-9418(99)00017-3.

Surya, I. and Edwin, 2020. Silica-filled Styrene-butadiene Rubber in the Existence of Palmitamide: Vulcanization Properties and Reinforcement Index. IOP Conference Series Materials Science and Engineering. 801: 012095

DOI: https://doi.org/10.1088/1757-899X/801/1/012095.

Hamed, G. R., and Rattanasom, N. 2002. Effect of Crosslink Density on Cut Growth in Black-Filled Natural Rubber Vulcanizates. Rubber Chemistry and Technology. 75(5): 935–942.

DOI: https://doi.org/10.5254/1.3547693.






Science and Engineering

How to Cite

EFFECT OF VULCANIZATION SYSTEMS AND CROSSLINK DENSITY ON TENSILE PROPERTIES AND NETWORK STRUCTURES OF NATURAL RUBBER . (2022). Jurnal Teknologi, 84(6), 181-187. https://doi.org/10.11113/jurnalteknologi.v84.16467