INSIGHT INTO THE THERMOSTABILITY OF NOVEL FLUORESCENT PROTEIN ISOLATED FROM SEA ANEMONE CRIBRINOPSIS JAPONICA: IN SILICO STUDY

Authors

  • Muhammad Hariz Asraf Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-5310-2591
  • Razauden Mohamed Zulkifli Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Azlina Ahmad Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-7676-2904
  • Rusna Shakira Rusli Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hilzaiti Ahmad Shaari Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0003-0237-9117
  • Mohd Shahir Shamsir Omar https://orcid.org/0000-0002-1191-1294
  • Siti Noor Aishah A Rohman Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.16492

Keywords:

Fluorescent protein, ab initio, structural prediction, molecular dynamic simulation, thermostability

Abstract

Fluorescent protein has been applied in various diagnostic and biotechnology application. However, in these applications, the temperature conditions are simulated at higher temperatures of 289K and 300K compared to natural sea anemone Cribrinopsis japonica fluorescent protein. This study evaluates the predictive structure and the molecular dynamic interaction of the protein with its target in different external temperature using ab initio similarity modeling and GROMACS/VMD respectively. Three-dimensional structure of the protein, named cjFP510 were predicted and analysed based on the highest similarity template model of Anemonia sulcata (2c9i) at 66.97%. The predicted model shows alternating a and β helices with longer loops and extra a-helix. cjFP510 was programmed with molecular dynamic simulation with template protein 2c9i as a reference to study its comparative adaptability in two different temperatures of 289K and 300K. cjFP510 was found to be more stable at both temperatures compared to 2c9i. Further simulation was conducted on the gyration radius to evaluate the compactness of the protein folding. Lower gyration radius of cjFP510 denotes more stable protein at 289K simulated environment than 29ci. This may be due to the presence of an extra a -helix based on the predicted model and few amino acid residues such as glycine, lysine, and arginine which contributed to the protein flexibility and thermal stability Conclusively, cjFP510 is more thermostable in the two conditional temperatures tested.

References

Tsutsui, K., Hatada, Y., Tsuruwaka, Y. 2014. A New Species of Sea Anemone (Anthozoa: Actiniaria) from the Sea of Japan: Cribrinopsis japonica sp. nov. Plankt Benthos Res. 9: 197-202. https://doi.org/10.3800/pbr.9.197.

Tsutsui, K., Shimada, E., Tsuruwaka, Y. 2015. Deep-sea Anemone (Cnidaria: Actiniaria) Exhibits a Positive Behavioural Response to Blue Light. Mar Biol Res. 11: 998-1003. https://doi.org/10.1080/17451000.2015.1047382.

Snapp, E. 2005. Design and Use of Fluorescent Fusion Proteins in Cell Biology. Curr Protoc Cell Biol. 27: 21.4.1-21.4.13. https://doi.org/10.1002/0471143030.cb2104s27.

Aguilera, R. J., Montoya, J., Primm, T. P., Varela-Ramirez, A. 2006. Green Fluorescent Protein as a Biosensor for Toxic Compounds. In: Geddes CD, Lakowicz JR (ed). Reviews in Fluorescence 2006. Springer US, Boston, MA. 463-476. https://doi.org/10.1007/0-387-33016-X_21.

De Roo, J. J. D., Vloemans, S. A., Vrolijk, H., De Haas, E. F. E., Staal, F. J. T. 2019. Development of an In Vivo Model to Study Clonal Lineage Relationships in Hematopoietic Cells using Brainbow2.1/Confetti Mice. Futur Sc. OA. 5. https://doi.org/10.2144/fsoa-2019-0083.

Luo, J., Shen, P., Chen, J. 2019. A Modular Toolset of phiC31-based Fluorescent Protein Tagging Vectors for Drosophila. Fly. 13: 29-41. https://doi.org/10.1080/19336934.2019.1595999.

Oshiro, H., Kiyuna, T., Tome, Y., Miyake, K., Kawaguchi, K., Higuchi, T., Miyake, M., Zhang, Z., Razmjooei, S., Barangi, M., Wangsiricharoen, S., Nelson, S. D., Li, Y., Bouvet, M., Singh, S. R., Kanaya, F., Hoffman, R. M. 2019. Detection of Metastasis in a Patient-Derived Orthotopic Xenograft (PDOX) Model of Undifferentiated Pleomorphic Sarcoma with Red Fluorescent Protein. Anticancer Res. 39: 81-85. https://doi.org/10.21873/anticanres.13082.

Bihon Asfaw, A., Assefa, A. 2019. Animal Transgenesis Technology: A Review. Cogent Food Agric. 5: 1-9. https://doi.org/10.1080/23311932.2019.1686802.

Gassman, N. R., Holton, N. W. 2019. Targets for Repair: Detecting and Quantifying DNA Damage with Fluorescence-based Methodologies. Curr Opin Biotechnol. 55: 30-35. https://doi.org/10.1016/j.copbio.2018.08.001.

Tsutsui, K., Shimada, E., Ogawa, T., Tsuruwaka, Y. 2016. A Novel Fluorescent Protein from the Deep-sea Anemone Cribrinopsis japonica (Anthozoa: Actiniaria). Sci Rep. 6: 1-9. https://doi.org/10.1038/srep23493.

Craggs, T. D. 2009. Green Fluorescent Protein: Structure, Folding and Chromophore Maturation. Chem Soc Rev. 38: 2865-2875. https://doi.org/10.1039/B903641P.

Labas, Y. A., Gurskaya, N. G., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Lukyanov, S. A., Matz, M. V. 2002. Diversity and Evolution of the Green Fluorescent Protein Family. Proc Natl Acad Sci. 99: 4256-4261. https://doi.org/10.1073/pnas.062552299.

Shen, W., Le, S., Li, Y., Hu, F. 2016. SeqKit: A Caross-platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One. 11: 1-10. https://doi.org/10.1371/journal.pone.0163962.

Eric, S. D., Nicholas, T. K. D. D., Theophilus, K. A. 2014. Bioinformatics with Basic Local Alignment Search Tool (BLAST) and Fast Alignment (FASTA). J Bioinforma Seq Anal. 6: 1-6. https://doi.org/10.5897/ijbc2013.0086.

Jones, P., Binns, D., Chang, H-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S-Y., Lopez, R., Hunter, S. 2014. InterProScan 5: Genome-scale Protein Function Classification. Bioinformatics. 30: 1236-1240. https://doi.org/10.1093/bioinformatics/btu031.

Minguez, P., Letunic, I., Parca, L., Bork, P. 2013. PTMcode: A Database of Known and Predicted Functional Associations between Post-translational Modifications in Proteins. Nucleic Acids Res. 41: 306-311. https://doi.org/10.1093/nar/gks1230.

Rodriguez, R., Chinea, G., Lopez, N., Pons, T., Vriend, G. 1998. Homology Modeling, Model and Software Evaluation: Three Related Resources. Bioinformatics. 14: 523-528. https://doi.org/10.1093/bioinformatics/14.6.523.

Roy, A., Kucukural, A., Zhang, Y. 2010. I-TASSER: A Unified Platform for Automated Protein Structure and Function Prediction. Nat Protoc. 5: 725-738. https://doi.org/10.1038/nprot.2010.5.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E. 2004. UCSF Chimera-A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 25(2004): 1605-1612. https://doi.org/10.1002/jcc.20084.

K. Nienhaus, F. Renzi, B. Vallone, J. Wiedenmann, G. U. Nienhaus, Chromophore-protein interactions in the anthozoan green fluorescent protein asFP499. Biophys J 91: 4210-4220. https://doi.org/10.1529/biophysj.106.087411.

Darden, T., Perera, L., Li, L., Lee, P. 1999. New Tricks for Modelers from the Crystallography Toolkit: The Particle Mesh Ewald Algorithm and Its Use in Nucleic Acid Simulations. Structure. 7: 55-60. https://doi.org/10.1016/S0969-2126(99)80033-1.

Humphrey, W., Dalke, A., Schulten, K. 1996. Visual Molecular Dynamics. J Mol Graph. 14: 33-38.

Mavromatis, K., Tsigos, I., Tzanodaskalaki, M., Kokkinidis, M., Bouriotis, V. 2002. Exploring the Role of a Glycine Cluster in Cold Adaptation of an Alkaline Phosphatase. Eur J Biochem. 269: 2330-2335. https://doi.org/10.1046/j.1432-1033.2002.02895.x.

Hayes, M. A., Shor, A. C., Jesse, A., Miller, C., Kennedy, J. P., Feller, I. 2020. The Role of Glycine Betaine in Range Expansions: Protecting Mangroves against Extreme Freeze Events. J Ecol. 108: 61-69. https://doi.org/10.1111/1365-2745.13243.

Siddiqui, K. S., Poljak, A., Guilhaus, M., De Francisci, D., Curmi, P. M. G., Feller, G., D’Amico, S., Gerday, C., Uversky, V. N., Cavicchioli, R. 2006. Role of Lysine Versus Arginine in Enzyme Cold-adaptation: Modifying Lysine to Homo-arginine Stabilizes the Cold-adapted Alpha-amylase from Pseudoalteramonas haloplanktis. Proteins. 64: 486-501. https://doi.org/10.1002/prot.20989.

Lüthy, R., Bowie, J. U., Eisenberg, D. 1992. Assessment of Protein Models with Three-dimensional Profiles. Nature. 356: 83-85. https://doi.org/10.1038/356083a0.

Chaitanya, M., Babajan, B., Anuradha, C. M., Naveen, M., Rajasekhar, C., Madhusudana, P., Kumar, C. S. 2010. Exploring the Molecular Basis for Selective Binding of Mycobacterium tuberculosis Asp kinase Toward Its Natural Substrates and Feedback Inhibitors: A Docking and Molecular Dynamics Study. J Mol Model. 16: 1357-1367. https://doi.org/10.1007/s00894-010-0653-4.

Ban, X., Wu, J., Kaustubh, B., Lahiri, P., Dhoble, A. S., Gu, Z., Li, C., Cheng, L., Hong, Y., Tong, Y., Li, Z. 2020. Additional Salt Bridges Improve the Thermostability of 1,4-α-glucan Branching Enzyme. Food Chem. 316: 126348. https://doi.org/10.1016/j.foodchem.2020.126348.

Gao, J., Zhang, T., Zhang, H., Shen, S., Ruan, J., Kurgan, L. 2010. Accurate Prediction of Protein Folding Rates from Sequence and Sequence-derived Residue Flexibility and Solvent Accessibility. Proteins Struct Funct Bioinforma. 78: 2114-2130. https://doi.org/10.1002/prot.22727.

Lobanov, M. Y., Bogatyreva, N. S., Galzitskaya, O. V. 2008. Radius of Gyration as an Indicator of Protein Structure Compactness. Mol Biol. 42: 623-628. https://doi.org/10.1134/S0026893308040195.

Downloads

Published

2022-03-31

Issue

Section

Science and Engineering

How to Cite

INSIGHT INTO THE THERMOSTABILITY OF NOVEL FLUORESCENT PROTEIN ISOLATED FROM SEA ANEMONE CRIBRINOPSIS JAPONICA: IN SILICO STUDY . (2022). Jurnal Teknologi (Sciences & Engineering), 84(3), 163-171. https://doi.org/10.11113/jurnalteknologi.v84.16492