MAGNETO-RHEOLOGICAL (MR) DAMPER – PARAMETRIC MODELLING AND EXPERIMENTAL VALIDATION FOR LORD RD 8040-1

Authors

  • Ahmad Hafizal Mohd Yamin School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia https://orcid.org/0000-0001-5231-8342
  • Mat Hussin Ab Talib School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-8546-9849
  • Intan Zaurah Mat Darus School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Nur Safwati Mohd Nor School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia https://orcid.org/0000-0003-0471-9920

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.16611

Keywords:

MR Damper, Modified Bouc-Wen model, semi-active (SA) system, experimental validation, Lord RD 8040-1

Abstract

Magneto-rheological (MR) fluid technology has significantly developed during the past decades. The application of MR fluids has proliferated in various engineering fields with the development of MR fluid-based devices, especially MR fluid dampers. MR dampers are semi-active devices used for vibration reduction in many engineering applications. The MR dampers could offer an outstanding capability in semi-active vibration control due to excellent dynamical features such as fast response, low power consumption, and simple interfaces between electronic input and mechanical output. Modelling of MR damper is crucial in describing MR damper’s behaviour. It is critical to comprehend the dynamic behaviour of these devices, as nonlinear hysteresis is a rather complex phenomenon. The Modified Bouc-Wen model represents the MR damper mathematically since this model is capable of performing as precisely as the non-parametric model. The Modified Bouc-Wen model parameters are damper dependent and must be defined for further simulation studies before utilising the damper. Validation of MR damper experimentally is one of the tasks required to confirm the parametric model performance. The specified parameters are believed to be worthwhile for this MR damper’s use in further studies of real-time semi-active (SA) suspension systems. The small values of percentage difference for force (0.5-3.5%) indicate that the parameters implemented in the Modified Bouc-Wen model accurately portray the characteristics and behaviour of the MR damper.

References

Singru, P., Raizada, A., Krishnakumar, V., Garg, A., Tai, K., and Raj, V. 2017. Modeling of a Magneto-rheological (MR) Damper Using Genetic Programming. Journal of Vibroengineering. 19(5): 3169-3177.

DOI: https://doi.org/10.21595/jve.2017.17828.

Raizada, A., Singru, P., Krishnakumar, V., and Raj, V. 2016. Development of an Experimental Model for a Magnetorheological Damper Using Artificial Neural Networks (Levenberg-Marquardt Algorithm). Advances in Acoustics and Vibration. 1-6.

DOI : https://doi.org/10.1155/2016/7027259.

Zeinali, M., Mazlan S. A., Abd Fatah, A. Y., and Zamzuri, H. 2013. A Phenomenological Dynamic Model of a Magneto-rheological Damper Using a Neuro-fuzzy System. Smart Materials and Structures. 22(12).

DOI: https://doi.org/10.1088/0964-1726/22/12/125013.

Yazid, I. I. M., Mazlan, S. A., Kikuchi, T., Zamzuri, H., and Imaduddin, F. 2014. Design of Magneto-rheological Damper with a Combination of Shear and Squeeze Modes. Materials and Design. 54: 87-95.

DOI: https://doi.org/10.1016/j.matdes.2013.07.090.

Zhu, X., Jing, X., and Cheng, L. 2012. Magneto-rheological Fluid Dampers: A Review on Structure Design and Analysis. Journal of Intelligent Material Systems and Structure. 23(8): 839-873.

DOI: https://dx.doi.org/10.1177/1045389X12436735.

Nugroho, P. W., Li, W., Du, H., Alici, G., and Yang, J. 2014. An Adaptive Neuro Fuzzy Hybrid Control Strategy for a Semiactive Suspension with Magneto Rheological Damper. Advances in Mechanical Engineering. 1-11.

DOI : https://doi.org/10.1155/2014/487312.

Ab Talib, M. H., Mat Darus, I. Z., Mohd Samin, P., Mohd Yatim, H., Ardani, M. I., Shaharuddin, N. M. R., and Hadi, M. S. 2021. Vibration Control of Semi-active Suspension System using PID Controller with Advanced Firefly Algorithm and Particle Swarm Optimisation. Journal of Ambient Intelligence and Humanized Computing. 12(1): 1119-1137.

DOI: https://doi.org/10.1007/s12652-020-02158-w.

Berasategui, J., Gomez, A., Martinez-Agirre, M., Elejabarrieta, M. J., and Bou-Ali, M. M. 2018. Magneto-rheological Damper Behaviour in Aaccordance with Flow Mode. The European Physical Journal Applied Physics. 84(2): 1-6.

DOI: https://dx.doi.org/10.1051/epjap/2018180182.

Strecker, Z., Mazůrek, I., Roupec, J., and Klapka, M. 2015. Influence of MR Damper Response Time on Semiactive Suspension Control Efficiency. Meccanica. 50(8): 1949-1959.

DOI: https://doi.org/10.1007/s11012-015-0139-7.

Yıldız, A. S., Sivrioğlu, S., Zergeroğlu, E., and Çetin, Ş. 2015. Nonlinear Adaptive Control of Semi-active MR Damper Suspension with Uncertainties in Model Parameters. Nonlinear Dynamics. 79(4): 2753-2766.

DOI: https://doi.org/10.1007/s11071-014-1844-9.

Sun, S., Tang, X., Li, W., and Du, H. 2017. Advanced vehicle Suspension with Variable Stiffness and Damping MR damper. 2017 IEEE International Conference on Mechatronics. 444-448.

DOI: https://doi.org/10.1109/ICMECH.2017.7921148.

Tang, X., Du, H., Sun, S., Ning, D., Xing, Z., and Li, W. 2017. Takagi-Sugeno Fuzzy Control for Semi-Active Vehicle Suspension with a Magnetorheological Damper and Experimental Validation. IEEE/ASME Transactions on Mechatronics. 22(1): 291-300.

DOI: https://doi.org/10.1109/TMECH.2016.2619361.

Chen, C., Chan, Y. S., Zou, L., and Liao, W. H. 2018. Self-powered Magneto-rheological Dampers for Motorcycle Suspensions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 232(7): 921-935.

DOI: https://doi.org/10.1177/0954407017723761.

Pang, H., Liu, F., and Xu, Z. 2018. Variable Universe Fuzzy Control for Vehicle Semi-active Suspension System with MR Damper Combining Fuzzy Neural Network and Particle Swarm Optimisation. Neurocomputing. 306: 130-140.

DOI: https://doi.org/10.1016/j.neucom.2018.04.055.

Sharma, S. K., and Kumar, A. 2018. Ride Comfort of a Higher Speed Rail Vehicle Using a Magneto-rheological Suspension System. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics. 232(1): 32-48.

DOI: https://doi.org/10.1177/1464419317706873.

Meng, F., and Zhou, J. 2019. Modeling and Control of a Shear-Valve Mode MR Damper for Semiactive Vehicle Suspension. Mathematical Problems in Engineering. 1-8.

DOI: https://doi.org/10.1155/2019/2568185.

Negash, B.A., You, W., Lee, J., and Lee, K. 2020. Parameter Identification of Bouc-Wen Model for Magnetorheological (MR) Fluid Damper by a Novel Genetic Algorithm. Advances in Mechanical Engineering. 12(8): 1-12.

DOI: https://doi.org/10.1177/1687814020950546.

Bharathi Priya, C., and Gopalakrishnan, N. 2016. Parameter Identification of Long Stroke and Short Stroke MR Damper for its Use in Semi-Active Vibration Control. Journal of The Institution of Engineers (India): Series A. 97(4): 405-414.

DOI: https://doi.org/10.1007/s40030-016-0182-y.

Ashfak, A., Abdul Rasheed, K.K., and Abdul Jaleel, J. 2013. Modeling, Simulation and Experimental Validation of Magneto-Rheological Damper. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies. 267-274.

DOI: https://doi.org/10.1109/ICANMEET.2013.6609289.

Mohd Yamin, A. H., Mat Darus, I. Z., Ab Talib, M. H. and Mohd Nor, N. S. 2021. Intelligent Cuckoo Search Algorithm of PID and Skyhook Controller for Semi-Active Suspension System using Magneto- Rheological Damper. Malaysian Journal of Fundamental and Applied Sciences. 17(4): 402-415.

DOI: https://doi.org/10.11113/mjfas.v17n4.2067.

Ab Talib, M. H., Mat Darus, I. Z. and Mohd Samin, P. 2018. Fuzzy Logic with a Novel Advanced Firefly Algorithm and Sensitivity Analysis for Semi-active Suspension System Using Magneto-rheological Damper. Journal of Ambient Intelligence and Humanized Computing. 10(2019): 3263-3278.

DOI: https://doi.org/10.1007/s12652-018-1044-4.

Ab Talib, M. H., and Mat Darus, I. Z. 2014. Development of Fuzzy Logic Controller by Particle Swarm Optimisation Algorithm for Semi-active Suspension System Using Magneto-rheological Damper. WSEAS Transactions on Systems and Control. 9(1): 77-85

LORD Corporation. RD-8040-1 and RD-8041-1 Dampers. June 2009.

Sharipov, G. M, Paraforos, D. S., and Griepentrog, H. W. 2018. Implementation of a Magneto-rheological Damper on a No-till Seeding Assembly for Optimising Seeding Depth. Computers and Electronics in Agriculture. 150: 465-475.

DOI: https://doi.org/10.1016/j.compag.2018.05.024.

Rossi, A., Orsini, F., Scorza, A., Botta, F., Belfiore, N. P., and Sciuto, S. A. 2018. A Review on Parametric Dynamic Models of Magnetorheological Dampers and Their Characterisation Methods. Actuators. 7(2): 1-21.

DOI: https://doi.org/10.3390/act7020016.

Kasprzyk, J., Wyrwał, J., and Krauze, P. 2014. Automotive MR Damper Modeling for Semi-active Vibration Control. 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 500-505.

DOI: https://doi.org/10.1109/AIM.2014.6878127.

Fellah Jahromi, A., Bhat, R. B., and Xie, W.-F. 2015. Frequency Dependent Spencer Modeling of Magnetorheological Damper Using Hybrid Optimization Approach. Shock and Vibration. 1-8.

DOI : http://dx.doi.org/10.1155/2015/382541.

Mohd Yamin, A. H., Mat Darus, I. Z., Sahlan, S., Ab Talib, M. H. and Mohd Nor, N. S. 2019. Intelligent Cuckoo Search Algorithm of Skyhook Controller for Semi-Active Suspension using MR Damper. 2019 2nd International Conference on Applied Engineering. 1-6.

DOI: https://doi.org/10.1109/ICAE47758.2019.9221732.

Gao, X. 2012. Development of a Robust Framework for Real-time Hybrid Simulation: From Dynamical System, Motion Control To Experimental Error Verification. PhD Thesis, Purdue University, Indiana.

https://docs.lib.purdue.edu/dissertations/AAI3556206/.

Zayed, A. A. A, Assal, S. F. M. and Khourshid, A. M. 2014. Experimental Investigation of the Effect of Magneto-Rheological MR Damper on a Rotating Unbalance SDOF System. International Journal of Engineering Research and Technology. 3(12): 1087-1092.

Downloads

Published

2022-01-27

Issue

Section

Science and Engineering

How to Cite

MAGNETO-RHEOLOGICAL (MR) DAMPER – PARAMETRIC MODELLING AND EXPERIMENTAL VALIDATION FOR LORD RD 8040-1. (2022). Jurnal Teknologi (Sciences & Engineering), 84(2), 27-34. https://doi.org/10.11113/jurnalteknologi.v84.16611