BIOMECHANICAL EVALUATION OF LOCKING COMPRESSION PLATE (LCP) VERSUS DYNAMIC COMPRESSION PLATE (DCP): A FINITE ELEMENT ANALYSIS

Authors

  • Muhammad Khairul Asyraf Suaimi ᵃMedical Devices and Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇBioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Amir Mustakim Ab Rashid ᵃMedical Devices and Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇBioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Kafrawi Nasution Faculty of Engineering, Muhammadiyah University of Riau, Pekanbaru, 28291, Riau, Indonesia https://orcid.org/0000-0002-6054-3862
  • Gan Hong Seng Department of Data Science, Universiti Malaysia Kelantan, 16100 UMK City Campus Pengkala Chepa, Kelantan, Malaysia https://orcid.org/0000-0003-3777-3640
  • Mohammed Rafiq Abdul Kadir ᵇBioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵉSports Innovation and Technology Centre (SITC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Hanif Ramlee ᵃMedical Devices and Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇBioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0003-2705-8379

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.16687

Keywords:

Locking Compression Plate, Dynamic Compression Plate, Von Mises Stress, Displacement, tibia

Abstract

Internal fixators are commonly used to treat long bone fractures, its aim is to provide interfragmentary compression, allow limited micromotion and provide stability to the bone for ambulation. However, complications such as non-unions, malunions and broken implant, can occur due to the complexity of mechanical force acting on the bone-plate models. Therefore, this study is proposed to investigate the biomechanical characterization of plate design on a tibia bone using finite element method. Two different designs; 1) locking compression plate (LCP) and dynamic compression plate (DCP) were simulated by using Marc.Mentat software. From the findings, the LCP have lower peak von Mises stress (VMS) distribution of 160 MPa compared to DCP with VMS value of 232 MPa. Surprisingly, the VMS of DCP plate system have exceed the yield strength of stainless steel (215 MPa) which translate to higher risk of failures. Moreover, the DCP plate system shows 50% lower stability compared to the LCP plate system, which has the peak displacement at 0.98 mm compared to the DCP bone at 1.53 mm. In conclusion, the LCP provides better stability and stress distribution up to 45% differences as compared to the DCP.

References

J. Decruz, R. P. Antony Rex, and S. A. Khan. 2019. Epidemiology of Inpatient Tibia Fractures in Singapore – A Single Centre Experience. Chinese J. Traumatol. - English Ed. 22(2): 99-102.

N. S. Anandasivam et al. 2017. Tibial Shaft Fracture: A Large-scale Study Defining the Injured Population and Associated Injuries. J. Clin. Orthop. Trauma. 8(3): 225-231.

J. E. Kleiner, J. E. Raducha, and A. I. Cruz. 2019. Increasing Rates of Surgical Treatment for Paediatric Tibial Shaft Fractures: A National Database Study from between 2000 and 2012. J. Child. Orthop. 13(2): 213-219.

F. Prinsloo, C. Flynn, M. Prime, A. Wickham, and S. Hettiaratchy. 2019. The Incidence of Chronic Pain Following Tibial Diaphyseal Fracture. J. Trauma Crit. Care. 03(01).

M. Plecko et al. 2012. The Influence of Different Osteosynthesis Configurations with locking Compression Plates (LCP) on Stability and Fracture Healing After an Oblique 45° Angle Osteotomy. Injury. 43(7): 1041-1051.

S. Märdian et al. 2019. Clinical Biomechanics Locking Plate Constructs Benefit from Interfragmentary Lag Screw Fixation with Decreased Shear Movements and More Predictable Fracture Gap Motion in Simple Fracture Patterns. Clin. Biomech. 70(August): 89-96.

D. Dimitriou, S. Waldmann, A. Antoniadis, M. Liebhauser, N. Helmy, and U. Riede. 2019. Early Locking Plate Removal Following Open Reduction and Internal Fixation of Proximal Humeral Fractures Could Prevent Secondary Implant-related Complications. J. Orthop. 17(April): 106-109.

O. F. Oken, A. O. Yildirim, and M. Asilturk. 2017. Finite Element Analysis of the Stability of AO/OTA 43-C1 Type Distal Tibial Fractures Treated with Distal Tibia Medial Anatomic Plate Versus Anterolateral Anatomic Plate. Acta Orthop. Traumatol. Turc. 51(5): 404-408.

M. H. Ramlee, M. R. A. Kadir, and H. Harun. 2013. Three-dimensional Modeling and Analysis of a Human Ankle Joint. Proceeding - 2013 IEEE Student Conf. Res. Dev. SCOReD 2013. December: 74-78.

M. H. Ramlee, M. R. Abdul Kadir, M. R. Murali, and T. Kamarul. 2014. Biomechanical Evaluation of Two Commonly Used External Fixators in the Treatment of Open Subtalar Dislocation-A Finite Element Analysis. Med. Eng. Phys. 36(10): 1358-1366.

E. Fågelberg, L. Grassi, P. Aspenberg, and H. Isaksson. 2015. Surgical Widening of a Stress Fracture Decreases Local Strains Sufficiently to Enable Healing in a Computational Model. Int. Biomech. 2(1):. 12-21.

R. M. A. R. Izaham, M. R. Abdul Kadir, and D. Al-Jefri Muslim. 2010. Screws Placement Effect on Locking Compression Plate (LCP) for Tibial Oblique Fracture Fixation. Proc. 2010 IEEE EMBS Conf. Biomed. Eng. Sci. IECBES 2010. December: 236-241.

G. L. Garcés, A. Yánez, A. Cuadrado, and O. Martel. 2017. Influence of the Number and Position of Stripped Screws on Plate–screw Construct Biomechanical Properties. Injury. 48: S54-S59.

A. R. MacLeod, A. H. R. W. Simpson, and P. Pankaj. 2015. Reasons Why Dynamic Compression Plates Are Inferior to Locking Plates in Osteoporotic Bone: A Finite Element Explanation. Comput. Methods Biomech. Biomed. Engin. 18(16): 1818-1825.

H. S. Abd Rahman, N. A. Abu Osman, W. A. B. Wan Abas, T. S. Tunku Ahmad, and E. S. Ng. 2008. Validation of Finite Element Analysis for a New External Finger Fixator to Correct Flexion Deformity - A Preliminary Result. IFMBE Proc. 21(1): 465-468.

D. K. S. Nishijima David L; Wisner, David H; Holmes, James F. 2016. HHS Public Access. Physiol. Behav. 176(1): 139-148.

M. H. H. Ramlee, N. A. Zainudin, H. F. Mohd Latip, G. Hong Seng, E. Garcia-Nieto, and M. R. Abdul Kadir. 2019. Biomechanical Evaluation of Pin Placement of External Fixator in Treating Tranverse Tibia Fracture: Analysis on First and Second Cortex of Cortical Bone. Malaysian J. Fundam. Appl. Sci. 15(1): 75-79.

M. H. Ramlee, M. A. Sulong, E. Garcia-Nieto, D. A. Penaranda, A. R. Felip, and M. R. A. Kadir. 2018. Biomechanical Features of Six Design of the Delta External Fixator for Treating Pilon Fracture: A Finite Element Study. Med. Biol. Eng. Comput. 56(10): 1925-1938.

J. J. Zhou, M. Zhao, D. Liu, H. Y. Liu, and C. F. Du. 2017. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis. J. Healthc. Eng. 2017: 1-11.

D. Jiang, S. Zhan, Q. Wang, M. Ling, H. Hu, and W. Jia. 2019. Biomechanical Comparison of Locking Plate and Cancellous Screw Techniques in Medial Malleolar Fractures: A Finite Element Analysis. J. Foot Ankle Surg. 000(6): 1-7.

R. M. A. Raja Izaham, M. R. Abdul Kadir, A. H. Abdul Rashid, M. G. Hossain, and T. Kamarul. 2012. Finite Element Analysis of Puddu and Tomofix Plate Fixation for Open Wedge High Tibial Osteotomy. Injury. 43(6): 898-902.

G. Gailani, S. Berri, and A. Sadegh. 2006. Constructing A 3D Finite Element Model To Investigate the Structural Behavior of LCP, DCP & LC-DCP Used In the Fixation of Long Bones. Proc.

P. Niemeyer and N. P. Südkamp. 2006. Principles and Clinical Application of the Locking Compression Plate (LCP). Acta Chir. Orthop. Traumatol. Cech. 73(4): 221-228.

C. Y. Chung. 2018. A Simplified Application (APP) for the Parametric Design of Screw-plate Fixation of Bone Fractures. J. Mech. Behav. Biomed. Mater. 77(February): 642-648.

M. Verset, S. Palierne, D. Mathon, P. Swider, and A. Autefage. 2012. Comparison of the Effect of Locking vs Standard Screws on the Mechanical Properties of Bone-plate Constructs in a Comminuted Diaphyseal Fracture Model. Comput. Methods Biomech. Biomed. Engin. 15(Suppl 1): September 337-339.

L. Claes, N. Meyers, J. Schülke, S. Reitmaier, S. Klose, and A. Ignatius. 2018. The Mode of Interfragmentary Movement Affects Bone Formation and Revascularization After Callus Distraction. PLoS One. 13(8): 1-12.

A. Mehboob and S. H. Chang. 2019. Effect of Initial Micro-movement of a Fracture Gap Fastened by Composite Prosthesis on Bone Healing. Compos. Struct. 226(May): 111213/

Y. Matsuura, T. Rokkaku, T. Suzuki, A. R. Thoreson, K. N. An, and K. Kuniyoshi. 2017. Evaluation of Bone Atrophy After Treatment of Forearm Fracture Using Nonlinear Finite Element Analysis: A Comparative Study of Locking Plates and Conventional Plates. J. Hand Surg. Am. 42(8): 659.e1-659.e9.

M. Windolf et al. 2010. Biomechanical Investigation of an Alternative Concept to Angular Stable Plating Using Conventional Fixation Hardware. BMC Musculoskelet. Disord. 11(May).

Downloads

Published

2022-03-31

How to Cite

Suaimi, M. K. A., Ab Rashid, A. M., Nasution, A. K., Hong Seng, G., Abdul Kadir, M. R., & Ramlee, M. H. (2022). BIOMECHANICAL EVALUATION OF LOCKING COMPRESSION PLATE (LCP) VERSUS DYNAMIC COMPRESSION PLATE (DCP): A FINITE ELEMENT ANALYSIS. Jurnal Teknologi, 84(3), 125-131. https://doi.org/10.11113/jurnalteknologi.v84.16687

Issue

Section

Science and Engineering