Surface Study in a Non-conventional (Electrical Discharge Machining) Process for Grade 6 Titanium Material

Authors

  • Md. Ashikur Rahman Khan Department of Information and Communication Technology, Noakhali Science and Technology University, Sonapur, Noakhali-3814, Bangladesh
  • M. M. Rahman Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v68.1670

Keywords:

Surface structure, grade 6 Ti, negative polarity, copper electrode, discharge energy

Abstract

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining.

 

Author Biography

  • Md. Ashikur Rahman Khan, Department of Information and Communication Technology, Noakhali Science and Technology University, Sonapur, Noakhali-3814, Bangladesh

    Assistant Professor

    Basic Engineering Department

References

X. Liu, P. K. Chu, C. Din. 2004. Mater. Sci. Eng. R. 47: 49–121.

M. J. Jr. Donachie, 2000. Titanium: A Technical Guide. 2nd ed. USA: ASM International.

M. M. Rahman, M. A. R. Khan, K. Kadirgama, M. M. Noor, R. A. Bakar, 2010. Adv. Control, Chem. Eng. Civil Eng. Mech. Eng. WSEAS. 34–37.

M. A. R. Khan, M. M. Rahman, K. Kadirgama, A. R. Ismail. 2012. J. Teknol. 59: 57‒61.

M. M. Rahman, M. A. R. Khan, M. M. Noor, K. Kadirgama, R. A. Bakar. 2011. Adv. Mater. Res. 213: 402‒408.

M. A. R. Khan, M. M. Rahman, K. Kadirgama, M. A. Maleque, R. A. Bakar. 2011. World Acad. of Sci. Eng. Technol. 74: 121‒125.

M. A .R. Khan, M. M. Rahman, K. Kadirgama. 2012. Adv. Sci. Lett. 14: 879‒884.

M. A. R. Khan, M. M. Rahman, K. Kadirgama, R. A. Bakar. 2012. Energy Educ. Sci. Techn. Part A: Energy Sci. Res. 29(2): 1025‒1038.

S. L. Chen, B. H. Yan, F. Y. Huang. 1999. J. Mater. Process. Technol. 87: 107–111.

A. Hascalik, U. Caydas. 2007. Appl. Surface Sci. 253: 9007–9016.

P. Fonda, Z. Wang, K. Yamazaki, Y. Akutsu. 2008. J. Mater. Process. Technol. 202: 583–589.

G. K. M. Rao, G. R. Janardhana, D. H. Rao, M. S. Rao. 2008. ARPN J. Eng. Applied Sciences. 3(1): 19‒30.

G. K. M. Rao, G. R. Rangajanardhana, D. H. Rao, M. S. Rao. 2009. J. Mater. Process. Technol. 209: 1512–1520.

J. Y. Kao, C. C. Tsao, S. S. Wang, C. Y. Hsu. 2010. Int. J. Adv. Manuf. Technol. 47: 395–402.

D. R. Swalla, R. W. Neu. 2006. Tribology Int. 39: 1016–1027.

F. L. Amorim, W. L. Weingaertner, 2007. J. Braz. Soc. Mech. Sci. Eng. 29(4): 367–371.

H. El-Hofy. 2005. Advance Machining Processes. Production Engineering Department Alexandria University. Egypt.

K. L. Wu, B. H. Yan, J. W. Lee, C. G. Ding. 2009. J. Mater. Process. Technol. 209: 3783–3789.

M. Kunieda, B. Lauwers, K. P. Rajurkar, B. M. Schumacher. 2005. CIRP Annals – Manuf. Technol. 54(2): 64‒87.

K. L. Wu, B. H. Yan, F. Y. Huang, S. C. Chen. 2005. Int. J. Mach. Tools & Manuf. 45: 1195–1201.

H. Ramasawmy, L. Blunt, K. P. Rajurkar. 2005. Precision Eng. 29: 479–490.

Downloads

Published

2014-04-23

Issue

Section

Science and Engineering

How to Cite

Surface Study in a Non-conventional (Electrical Discharge Machining) Process for Grade 6 Titanium Material. (2014). Jurnal Teknologi, 68(1). https://doi.org/10.11113/jt.v68.1670