ENGINEERING PROPERTIES OF LIGHTWEIGHT FOAMED CONCRETE STRENGTHEN WITH FIBREGLASS NETTING

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.16756

Keywords:

Foamed concrete, compression, porosity, flexural strength, water absorption

Abstract

Lightweight foamed concrete (LFC) is widely recognised as a low-density concrete with multiple applications. Yet, since its weight is approximately half that of conventional concrete, its strength should also be lower. Hence, synthetic and natural short fibres were utilised by previous researchers to enhance the performance of LFC. The use of textiles as reinforcing elements has attracted substantial attention in recent years. Consequently, the purpose of this study was to conduct an experimental investigation to determine the engineering properties of LFC reinforced with fibreglass mesh netting. In this study, LFC samples with densities of 550 kg/m3 and 1150 kg/m3 were formulated using a constant cement-to-sand ratio of 1:1.5, and a cement-to-water ratio of 0.45. The LFC specimens were jacketed with 1 layer, 2 layers and 3 layers fibreglass netting. The properties determined were compressive strength, flexural strength, split tensile strength, porosity, water absorption, UPV and drying shrinkage. Accordingly, the results showed that the incorporation of fibreglass netting in LFC helps reduce the absorption of water and the porosity of LFC for all densities. In addition to crack control, fibreglass netting also improves the drying shrinkage, flexural, compressive, tensile strengths and UPV. The optimal engineering properties were achieved with the addition of 3-layer fiberglass netting for 1150 kg/m3 density LFC.

References

Nawi, M. N. M., Lee, A., Mydin, M. A. O. and Osman, W. N., Rofie, M. K. 2018. Supply Chain Management (SCM): Disintegration Team Factors in Malaysian Industrialised Building System (IBS) Construction Projects. Int. J. Supply Chain Manag. 7(1): 140-143.

Mydin, M. A. O., Phius, A. F., Sani, N. and Tawil, N. M. 2014. Potential of Green Construction in Malaysia: Industrialised Building System (IBS) vs Traditional Construction Method. E3S Web Conf. 3: 01009.

Doi: https://doi.org/10.1051/e3sconf/20140301009.

Mohamad, N., Iman, M. A., Othuman Mydin, M. A., Samad, A. A. A., Rosli, J. A. and Noorwirdawati, A. 2018. Mechanical Properties and Flexure Behaviour of Lightweight Foamed Concrete Incorporating Coir Fibre. IOP Conf. Ser. Earth Environ. Sci. 140: 012140.

DOI: https://doi.org/10.1088/1755-1315/140/1/012140.

Serri, E., Suleiman, M. Z. and Mydin, M. A. O. 2014. The Effects of Oil Palm Shell Aggregate Shape on the Thermal Properties and Density of Concrete. Adv. Mat. Res. 935: 172-175.

Doi: http://dx.doi.org/10.4028/www.scientific.net/AMR.935.172.

Mohamad, N., Samad, A. A. A., Lakhiar, M. T., Othuman Mydin, M. A., Jusoh, S., Sofia, A. and Efendi, S. A. 2018. Effects of Incorporating Banana Skin Powder (BSP) and Palm Oil Fuel Ash (POFA) on Mechanical Properties of Lightweight Foamed Concrete. Int. J. Int. Eng. 10: 169-176.

Liu, Y., Wang L., Cao K. and Sun, L. 2021. Review on the Durability of Polypropylene Fibre-Reinforced Concrete. Adv. Civ. Eng. 6652077: 1-13.

Doi: https://doi.org/10.1155/2021/6652077.

Falliano, D., Domenico, D. de, Ricciardi G. and Gugliandolo, E. 2019. Compressive and Flexural Strength of Fiber-reinforced Foamed Concrete: Effect of Fiber Content, Curing Conditions and Dry Density. Constr. Build. Mater. 198: 479-93.

Doi: https://doi.org/10.1016/j.conbuildmat.2018.11.197.

Castillo-Lara, J. F., Flores-Johnson E. A., Valadez-Gonzalez A., Herrera-Franco P. J., Carrillo J. G., Gonzalez-Chi P. I. and Li, Q. M. 2020. Mechanical Properties of Natural Fiber Reinforced Foamed Concrete. Materials. 13: 3060.

Doi: http://dx.doi.org/10.3390/ma13143060.

Othuman Mydin, M. A., Mohamed Shajahan, M. F., Ganesan, S. and Sani, N. M. 2014. Laboratory Investigation on Compressive Strength and Micro-Structural Features of Foamed Concrete with Addition of Wood Ash and Silica Fume as a Cement Replacement. MATEC Web Conf. 17: 01004.

Doi: https://doi.org/10.1051/matecconf/20141701004.

Ganesan, S., Othuman Mydin, M. A., Sani, N. M. and Che Ani, A. I. 2014. Performance of Polymer Modified Mortar with Different Dosage of Polymeric Modifier. MATEC Web Conf. 15: 01039.

Doi: https://doi.org/10.1051/matecconf/20141501039.

Pakravan, H. R., Latifi, M. and Jamshidi, M. 2017. Hybrid Short Fiber Reinforcement System in Concrete: A Review. Constr. Build. Mater. 142: 280-294.

Doi: https://doi.org/10.1016/j.conbuildmat.2017.03.059.

Othuman Mydin, M. A., Sani, N. M. and Phius, A. F. 2014. Investigation of Industrialised Building System Performance in Comparison to Conventional Construction Method. MATEC Web Conf. 10: 04001.

Doi: http://dx.doi.org/10.1051/matecconf/20141004001.

Mydin, M. A. O. and Soleimanzadeh, S. 2012. Effect of Polypropylene Fiber Content on Flexural Strength of Lightweight Foamed Concrete at Ambient and Elevated Temperatures. Adv. Appl. Sci. Res. 3: 2837-2846.

Tambichik, M. A., Abdul Samad, A. A., Mohamad, N., Mohd Ali, A. Z., Othuman Mydin, M. A., Mohd Bosro, M. Z. and Iman, M. A. 2018. Effect of combining Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as Partial Cement Replacement to the Compressive Strength of Concrete. Int. J. Integr. Eng. 10: 61-67.

Doi: http://dx.doi.org/10.30880/ijie.2018.10.08.004.

Amran, Y. M., Farzadnia, N. and A. A. Ali. 2015. Properties and Applications of Foamed Concrete: A Review. Construction and Building Materials. 101: 990-1005.

Doi: http://dx.doi.org/10.1016/j.conbuildmat.2015.10.112.

Awang, H., Mydin, M. A. O. and Roslan, A. F. 2012. Effects of Fibre on Drying Shrinkage, Compressive and Flexural Strength of Lightweight Foamed Concrete. Adv. Mat. Res. 587: 144-149.

Doi: http://dx.doi.org/10.4028/www.scientific.net/AMR.587.144.

Amran, M., Fediuk, R., Vatin, N., Huei Lee, Y., Murali, G., Ozbakkaloglu, T., Klyuev, S., Alabduljabber, H. 2020. Fibre-Reinforced Foamed Concretes: A Review. Materials. 13: 4323.

Doi: http://dx.doi.org/10.3390/ma13194323.

Othuman Mydin, M. A., Zamzani, N. M. and Ghani, A. N. A. 2019. Experimental Data on Compressive and Flexural Strengths of Coir Fibre Reinforced Foamed Concrete at Elevated Temperatures. Data in Brief. 25: 104320.

Doi: https://doi.org/10.1016/j.dib.2019.104320.

Zhukov, A. D., Bessonov, I., Efimov, B., Medvedev, A., Poserenin, A. 2020. Foam Fiber-reinforced Concrete: Technology and Methodology of Selection of the Composition. IOP Conf. Ser. Mater. Sci. Eng. 896: 012072.

Doi: http://dx.doi.org/10.1088/1757-899X/896/1/012072.

Vasilovskaya, N.G., Endzhievskaya, I.G., Kalugin, I.G., Druzhinkin, S. V., Zeer, G. M. 2014. Influence of Basalt Fibre on Foam Concrete Structure. J. Sib. Fed. Univ. Eng. Technol. 6: 689-697.

Kudyakov, A. I., Steshenko, A. B. 2015. Shrinkage Deformation of Cement Foam Concrete. IOP Conf. Series: Mater. Sci. Eng. 71: 012019.

Doi: http://dx.doi.org/10.1061/(ASCE)0899-1561(2009)21:11(631).

Othuman Mydin, M. A., Rozlan, N. A., Sani, N. M. and Ganesan, S. 2014. Analysis of Micro-morphology, Thermal Conductivity, Thermal Diffusivity and Specific Heat Capacity of Coconut Fibre Reinforced Foamed Concrete. MATEC Web Conf. 17: 01020.

Doi: https://doi.org/10.1051/matecconf/20141701020.

Nensok, M. H., Mydin, M. A. O. and Awang, H. 2021. Investigation of Thermal, Mechanical and Transport Properties of Ultra Light-weight Foamed Concrete (UFC) Strengthened with Alkali Treated Banana Fibre. J. Adv. Res. Fluid Mech. Therm. Sci. 86(1): 123-139.

Doi: https://doi.org/10.37934/arfmts.86.1.123139.

Chandni, T.J. and Anand. K.B. (2018) Utilization of Recycled Waste as Filler in Foam Concrete. Journal of Building Engineering. 19: 154-160

DOI: https://doi.org/10.1016/j.jobe.2018.04.032

Serri, E., Othuman Mydin, M. A. and Suleiman, M. Z. 2015. The Influence of Mix Design on Mechanical Properties of Oil Palm Shell Lightweight Concrete. J. Mater. Environ. Sci. 6(3): 607-612.

Suhaili, S. S., Mydin, M. A. O. and Awang, H. 2021. Influence of Mesocarp Fibre Inclusion on Thermal Properties of Foamed Concrete. J. Adv. Res. Fluid Mech. Therm. Sci. 87(1): 1-11.

Doi: https://doi.org/10.37934/arfmts.87.1.111.

Mydin, M. A. O., Mohamad, N., Samad, A. A. A., Johari, I. and Munaaim, M. A. C. 2018. Durability Performance of Foamed Concrete Strengthened with Chemical Treated (NaOH) Coconut Fiber. AIP Conf. Proc. 2016: 020109.

Doi: https://doi.org/10.1063/1.5055511.

Nensok, M. H., Mydin, M. A. O. and Awang, H. 2022. Fresh State and Mechanical Properties of Ultra-lightweight Foamed Concrete Incorporating Alkali Treated Banana Fibre. Jurnal Teknologi. 84(1): 117-128.

Doi: https://doi.org/10.11113/jurnalteknologi.v84.16892.

Mydin, M. A. O., Zamzani, N. M. and Ghani, A. N. A. 2018. Effect of Alkali-activated Sodium Hydroxide Treatment of Coconut Fiber on Mechanical Properties of Lightweight Foamed Concrete. AIP Conf. Proc. 2016: 020108.

Doi: https://doi.org/10.1063/1.5055510.

Ahmed, H. K., Abbas, W. A. and AlSaff, D. 2013. Effect of Plastic Fibers on Properties of Foamed Concrete. Eng. Technol. J. 31: 1313-1330

Ling, P. C. H., Shim, K. C., Bennet, L. A, Tan, C. S. and Yong, E. L. 2018. Mechanical Properties of Lightweight Foamed Concrete Using Polycarboxylate Ether Superplasticizer. IOP Conference Series: Materials Science and Engineering. 431(6): 062008

Doi: https://doi.org/10.1088/1757-899X/431/6/062008.

Jones, M. R. and McCarthy, A. 2005. Utilising Unprocessed Low-Lime Coal Fly Ash in Foamed Concrete. Fuel. 84(11): 1398-1409.

Doi: https://doi.org/10.1016/j.fuel.2004.09.030.

Gökçe, H. S., D. Hatungimana, and K. Ramyar. 2019. Effect of Fly Ash and Silica Fume on Hardened Properties of Foam Concrete. Construction and Building Materials. 194: 1-11.

Doi: https://doi.org/10.1016/j.conbuildmat.2018.11.036.

Nambiar, K. E. K. and Ramamurthy, K. 2008. Fresh State Characteristics of Foam Concrete. Journal of Materials in Civil Engineering. 20(2): 111-117.

Doi: http://dx.doi.org/10.1061/(ASCE)0899-1561(2008)20:2(111).

Pan, Z., Li, H. and Liu, W. 2014. Preparation and Characterization of Super Low Density Foamed Concrete from Portland Cement and Admixtures. Construction and Building Materials. 72: 256-261.

Doi: https://doi.org/10.1016/j.conbuildmat.2014.08.078.

Hamad, A. J. 2014. Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review. International Journal of Materials Science and Engineering. 2(2): 152-157.

Doi: http://dx.doi.org/10.12720/ijmse.2.2.152-157.

Just, A. and Middendorf, B. 2009. Microstructure of High-strength Foam Concrete. Mater. Charact. 60(7): 741-748.

Doi: https://doi.org/10.1016/j.matchar.2008.12.011.

Raj, A., Sathyan, D. and Mini, K. M. 2019. Physical and Functional Characteristics of Foam Concrete: A Review. Construction and Building Materials. 221: 787-799.

Doi: https://doi.org/10.1016/j.conbuildmat.2019.06.052.

Roslan, A. H., Awang H. and Othuman Mydin, M. A. 2013. Effects of Various Additives on Drying Shrinkage, Compressive and Flexural Strength of Lightweight Foamed Concrete (LFC). Advanced Materials Research Journal. 626: 594-604.

Doi: http://dx.doi.org/10.4028/www.scientific.net/AMR.626.594.

Johnson Alengaram, U., Al Muhit, B. A., Jumaat, M. Z. and Michael, L. Y. J. 2013. A Comparison of the Thermal Conductivity of Oil Palm Shell Foamed Concrete with Conventional Materials. Materials & Design. 51: 522-529.

Doi: https://doi.org/10.1016/j.matdes.2013.04.078.

Downloads

Published

2023-04-19

Issue

Section

Science and Engineering

How to Cite

ENGINEERING PROPERTIES OF LIGHTWEIGHT FOAMED CONCRETE STRENGTHEN WITH FIBREGLASS NETTING. (2023). Jurnal Teknologi, 85(3), 165-173. https://doi.org/10.11113/jurnalteknologi.v85.16756