THE INFLUENCE OF THE NON-SYMMETRIC PUNCHING PROCESS PARAMETER ON THE HOLE SHAPE AND QUALITY OF A COMMERCIALLY PURE TITANIUM SHEET

Authors

  • Muslim Mahardika ᵃDepartment of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Indonesia ᵇCentre for Innovation of Medical Equipments and Devices/CIMEDs, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia
  • Yani Kurniawan Department of Mechanical Engineering, Faculty of Engineering, Pancasila University, Jakarta, Indonesia
  • Suyitno - ᵃDepartment of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Indonesia ᵇCentre for Innovation of Medical Equipments and Devices/CIMEDs, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia
  • Muhammad Haritsah Amrullah Department of Mechanical Engineering, Politeknik Manufaktur Negeri Bangka Belitung, Indonesia
  • Budi Arifvianto ᵃDepartment of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Indonesia ᵇCentre for Innovation of Medical Equipments and Devices/CIMEDs, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.16848

Keywords:

Non-symmetric punching, punching process, punch force, sheared surface, work hardening

Abstract

Recently, punching technology has become one of the promising manufacturing techniques for a thin metallic sheet. The processing parameters used in this technique have been recognized to influence the hole shape produced in the working materials. Therefore, it is important to understand the effect of the punching process parameters on the hole shape and quality over the manufactured materials. This study aims to determine the influence of the punching process on the non-symmetrical hole shape and quality over a commercially pure titanium sheet. The effect of punch speed on the punch force and the sheared surface is also studied, by applying the punch velocities of 10, 35 and 70 mm/s. The sheared surface of the hole was examined at its four different sides, namely K (straight), L (outer radius), N (inner radius) and M (straight). The results show uneven distribution of punch strength as detected at the affected region of the non-symmetrical hole. In addition, the punch force increased with the increase of punch speed. Meanwhile, the sheared surfaces on each side were apparently different. The burnish height on the side of the radius was found to be about 0.038 mm higher than that on the straight side. The burnish height on the radius side increases by 0.43 mm with the increasing punch speed from 10 to 70 mm/s. However, the increased punch velocity did not always increase the burr height. The work hardening that occurs on the straight side is smaller by about 15% than the radius side.

References

Van Noort, R. 1987. Titanium: The Implant Material of Today. Journal of Materials Science. 22(11): 3801-3811.

Doi: https://doi.org/10.1007/BF01133326.

Acero, J., Calderon, J., Salmeron, J. I., Verdaguer, J. J., Concejo, C., & Somacarrera, M. L. 1999. The Behaviour of Titanium as a Biomaterial: Microscopy Study of Plates and Surrounding Tissues in Facial Osteosynthesis. Journal of Cranio-maxillofacial Surgery. 27(2): 117-123.

Doi: https://doi.org/10.1016/S1010-5182(99)80025-0.

Arifvianto, B., Suyitno., & Mahardika, M. 2013. Surface Modification of Titanium using Steel Slag Ball and Shot Blasting Treatment for Biomedical Implant Applications. International Journal of Minerals, Metallurgy, and Materials. 20(8): 788-795.

Doi: https://doi.org/10.1007/s12613-013-0797-1.

Prayoga, B. T., Dharmastiti, R., Akbar, F., & Suyitno. 2018. Microstructural Characterization, Defect and Hardness of Titanium Femoral Knee Joint Produced using Vertical Centrifugal Investment Casting. Journal of Mechanical Science Technology. 32(1): 149-156.

Doi: https://doi.org/10.1007/s12206-017-1216-8.

Sutiyoko, Suyitno, Mahardika, M., & Syamsudin, A. 2016. Prediction of Shrinkage Porosity in Femoral Stem of Titanium Investment Casting. Archives of Foundry Engineering. 16(4): 157-162.

Doi: 10.1515/afe-2016-0102.

Setyana, L. D., Mahardika, M., Sutiyoko, S., & Suyitno, S. 2019. Influence of Gate Shape and Direction during Centrifugal Casting on Artificial Lumbar Disc Model of cp-ti. Acta Metallurgica Slovaca. 25(3): 193-202.

Doi: http://dx.doi.org/10.12776/ams.v25i3.1315.

Salim, U. A., Suyitno, Magetsari, R., & Mahardika, M. 2017. Development of the Gliding Hole of the Dynamics Compression Plate. IOP Conference Series: Materials Science and Engineering. 172(1): 012060.

Doi: https://doi.org/10.1088/1757-899X/172/1/012060.

Alias, A., Abdullah, B., & Abbas, N. M. 2012. Influence of Machine Feed Rate in wedm of Titanium Ti-6Al-4V with Constant Current (6A) using Brass Wire. Procedia Engineering. 41: 1806-1811.

Doi: https://doi.org/10.1016/j.proeng.2012.07.387.

Schey, J. A. 2000. Introduction to Manufacturing Processes. Third Edition. Mc Graw Hill Higher Education.

Lee, H. T., & Tai, T. Y. 2003. Relationship between EDM Parameters and Surface Crack Formation. Journal of Materials Processing Technology. 142(3): 676-683.

Doi: https://doi.org/10.1016/S0924-0136(03)00688-5.

Kumar, A., Kumar, V., & Kumar, J. 2013. Experimental Investigation on Material Transfer Mechanism in WEDM of Pure Titanium (Grade-2). Advances in Materials Science and Engineering.

Doi: http://dx.doi.org/10.1155/2013/847876.

Kumar, A., Kumar, V., & Kumar, J. 2016. Surface Crack Density and Recast Layer Thickness Analysis in WEDM Process through Response Surface Methodology. Machining Science and Technology. 20(2): 201-230.

Doi: http://dx.doi.org/10.1080/10910344.2016.1165835.

Yan, B. H., Tsai, H. C., & Huang, F. Y. 2005. The Effect in EDM of a Dielectric of a Urea Solution in Water on Modifying the Surface of Titanium. International Journal of Machine Tools and Manufacture. 45(2): 194-200.

Doi: https://doi.org/10.1016/j.ijmachtools.2004.07.006.

Muthuramalingam, T., Mohan, B., & Jothilingam, A. 2014. Effect of Tool Electrode Resolidification on Surface Hardness in Electrical Discharge Machining. Materials and Manufacturing Processes. 29(11-12): 1374-1380.

Doi: http://dx.doi.org/10.1080/10426914.2014.930956.

Kumar, S., & Dhingra, A. K. 2018. Effects of Machining Parameters on Performance Characteristics of Powder Mixed EDM of Inconel-800. International Journal of Automotive and Mechanical Engineering. 15(2): 5221-5237.

Doi: https://doi.org/10.15282/ijame.15.2.2018.6.0403.

Newton, T. R., Melkote, S. N., Watkins, T. R., Trejo, R. M., & Reister, L. 2009. Investigation of the Effect of Pocess Parameters on the Formation and Characteristics of Recast Layer in Wire-EDM of Inconel 718. Materials Science and Engineering A. 513-514: 208-215.

Doi: https://doi.org/10.1016/j.msea.2009.01.061.

Lim, L. C., Lee, L. C., Wong, Y. S., & Lu, H. H. 1991. Solidification Microstructure of Discharge Machined Surfaces of Tool Steels. Materials Science and Technology. 7(3): 239-248.

Doi: https://doi.org/10.1179/mst.1991.7.3.239.

Ramulu, M., Jenkins, M. G., & Daigneault, J. A. 1997. Spark-Erosion Process Effects on the Properties and Performance of a TiB2 Particulatereinforced/sic Matrix Ceramic Composite. Ceramic Engineering and Science Proceeding. 18(3): 227-238.

Doi: https://doi.org/10.1002/9780470294437.ch25.

Thomson, P. F. 1989. Surface Damage in Electrodischarge Machining. Materials Science and Technology. 5(11): 1153-1157.

Doi: https://doi.org/10.1179/mst.1989.5.11.1153.

Eichenhueller, B., Egerer, E., & Engel, U. 2007. Microforming at Elevated Temperature - forming and Material Behavior. The International Journal of Advanced Manufacturing Technology. 33: 119-124.

Doi: https://doi.org/10.1007/s00170-006-0731-z.

Aminzahed, I., Mashhadi, M. M., & Sereshk, M. R. V. 2017. Investigation of Holder Pressure and Size Effects Inmicro Deep Drawing of Rectangular Work Pieces Driven by Piezoelectric Actuator. Materials Science and Engineering C. 71: 685-689.

Doi: https://doi.org/10.1016/j.msec.2016.10.068.

Irthiea, K., & Green, G. 2017. Evaluation of Micro Deep Drawing Technique using Soft Die-simulation and Experiments. The International Journal of Advanced Manufacturing Technology. 89(5-8): 2363-2374.

Doi: https://doi.org/10.1007/s00170-016-9167-2.

Shirin, M. B., Hashemi, R., & Assempour, A. 2018. Analysis of Deep Drawing Process to Predict the Forming Severity Considering Inverse Finite Element and Extended Strain-based Forming Limit Diagram. Journal of Computational and Applied Research in Mechanical Engineering. 8(1): 39-48.

Doi: https://doi.org/10.22061/jcarme.2018.1750.1152.

Lubis, D. Z., & Mahardika, M. 2016. Influence of Clearance and Punch Speed on the Quality of Pure Thin Copper Sheet Blanked Parts. IOP Conference Series: Material Science Engineering. 157(1): 012012:1-6.

Doi: https://doi.org/10.1088/1757-899X/157/1/012012.

Ristiawan, I., & Mahardika, M. 2017. Effect of Clearance and Punch Speed on the Cutting Surface Quality Results of a Brass Blanking on the Micropunch CNC Machine. AIP Conference Proceedings. 1831(1): 020054-1-020054-9.

Doi: https://doi.org/10.1063/1.4981195.

Xu, J., Guo, B., Shan, D., Wang, C., Li, J., Liu, Y., & Qu, D. 2012. Development of a Micro-forming System for Micro-punching Process of Micro-hole Arrays in Brass Foil. Journal of Materials Processing Technology. 212(11): 2238-2246. Doi: https://doi.org/10.1016/j.jmatprotec.2012.06.020.

Larue, A., Ranc, N., Qu, Y. F., Millot, M., Lorong, P., & Lapujoulade, F. 2008. Experimental Study of a High Speed Punching Process. International Journal of Material Forming. 1(1): 1427-1430.

Doi: https://doi.org/10.1007/s12289-008-0104-2.

Meng, B., Fu, M. W., Fu, C. M., & Wang, J. L. 2015. Multivariable Analysis of Micro Shearing Process Customized for Progressive Forming of Micro-Parts. International Journal of Mechanical Sciences. 93: 191-203. Doi: https://doi.org/10.1016/j.ijmecsci.2015.01.017.

Gotoh, M., & Yamashita, M. 2001. A Study of High-rate Shearing of Commercially Pure Aluminum Sheet. Journal of Materials Processing Technology. 110(3): 253-264.

Doi: https://doi.org/10.1016/S0924-0136(00)00879-7.

Kibe, Y., Okada, Y., & Mitsui, K. 2007. Machining Accuracy for Shearing Process of Thin-sheet Metals - Development of Initial Tool Position Adjustment System. International Journal of Machine Tools and Manufacture. 47(11): 1728-1737.

Doi: https://doi.org/10.1016/j.ijmachtools.2006.12.006.

Kwak, T. S., Kim, Y. J., & Bae, W. B. 2002. Finite Element Analysis on the Effect of Die Clearance on Shear Planes in Fine Blanking. Journal of Materials Processing Technology. 130-131: 462-468.

Doi: https://doi.org/10.1016/S0924-0136(02)00767-7.

Lou, S. Y. 1997. Studies on the Wear Conditions and the Sheared Edges in Punching. Wear. 208(1-2): 81-90.

Doi: https://doi.org/10.1016/S0043-1648(96)07439-X.

Xu, J., Guo, B., Shan, D., Wang, C., & Wang, Z. 2013. Surface Quality Improvements of WC–Co Micro-punch Finished by Ion Beam Irradiation for Micro-punching Process of Metal Foil. Surface and Coatings Technology. 235: 803-810.

Doi: https://doi.org/10.1016/j.surfcoat.2013.06.114.

Guo, W., & Tam, H. Y. 2012. Effects of Extended Punching on Wear of the WC/Co Micropunch and the Punched Microholes. The International Journal of Advanced Manufacturing Technology. 59(9-12): 955-960.

Doi: https://doi.org/10.1007/s00170-011-3567-0.

Guo, W., & Tam, H. Y. 2014. Effects of Carbon Nanotubes on Wear of WC/Co Micropunches. The International Journal of Advanced Manufacturing Technology. 72(1-4): 269-275.

Doi: https://doi.org/10.1007/s00170-014-5661-6.

Guo, W., & Tam, H. Y. 2013. Influence of the Processing Time on the Finishing of Punched Micro Holes by Planetary Stirring with Natural Sand Grains. Journal of Engineering Manufacture. 227(6): 1-9. Doi: https://doi.org/10.1177/0954405413476676.

Chern, G. L., & Wang, S. D. 2007. Punching of Noncircular Micro-holes and Development of Micro-forming. Precision Engineering. 31(3): 210-217.

Doi: https://doi.org/10.1016/j.precisioneng.2006.09.001.

Subramonian, S., Altan, T., Ciocirlan, B., & Campbell, C. 2013. Optimum Selection of Variable Punch-die Clearance to Improve Tool Life in Blanking Non-symmetric Shapes. International Journal of Machine Tools and Manufacture. 75: 63-71.

Doi: https://doi.org/10.1016/j.ijmachtools.2013.09.004.

Giancoli, D. C. 2014. Physics Principles with Applications. 7th ed. Pearson Prentice Hall, Boston.

Kurniawan, Y., Mahardika, M., Suyitno, Amrullah, M. H. 2019. Effect of Preheating on Punch Force, Sheared Surface and Work Hardening In Cold Punching Process of Commercially Pure Titanium Sheet. International Review of Mechanical Engineering (IREME). 13(9): 504-512.

Doi: https://doi.org/10.15866/ireme.v13i9.17398.

Kurniawan, Y., Mahardika, M., & Suyitno. 2020. Effect of Punch Velocity on Punch Force and Burnish Height of Punched Holes in Punching Procces of Pure Titanium Sheet. Journal of Physics: Conference Series. 1430(012053): 1-7.

Doi: https://iopscience.iop.org/article/10.1088/1742-6596/1430/1/012053.

Kurniawan, Y., Mahardika, M., & Suyitno. 2020. The Effect of Punch Geometry on Punching Process in Titanium Sheet. Jurnal Teknologi. 82(2): 101-111.

Doi: https://doi.org/10.11113/jt.v82.13947.

Meriam, J. L., & Kraige, L. G. 2006. Engineering Mechanics Statics. 7th ed. John Wiley & Sons, United states of America.

Groover, M. P. 2010. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems. 4th ed. John Wiley & Sons, United States of America.

Downloads

Published

2023-11-18

Issue

Section

Science and Engineering

How to Cite

THE INFLUENCE OF THE NON-SYMMETRIC PUNCHING PROCESS PARAMETER ON THE HOLE SHAPE AND QUALITY OF A COMMERCIALLY PURE TITANIUM SHEET. (2023). Jurnal Teknologi, 86(1), 1-13. https://doi.org/10.11113/jurnalteknologi.v86.16848