DEVELOPMENT OF MULTI FREQUENCY ELECTRICAL IMPEDANCE TOMOGRAPHY FOR RECTANGULAR GEOMETRY BY FINITE VOLUME METHODS

Authors

  • Khusnul Ain Biomedical Engineering, Airlangga University, Surabaya, Indonesia https://orcid.org/0000-0002-8315-7067
  • Deddy Kurniadi Physics Engineering, Institute of Technology Bandung, Bandung, Indonesia
  • Mokhamad Fakhrul Ulum Veteranary Clinic Reproduction and Pathology, Institute of Agriculture Bogor, Bogor, Indonesia
  • Lina Choridah Medicine, Gadjah Mada University, Yogyakarta, Indonesia
  • Utriweni Mukhayyar Statistics, Institute of Technology Bandung, Bandung, Indonesia
  • Agah D. Garnadi Mathematics and Sciences, Institute of Agriculture Bogor, Bogor, Indonesia
  • Nurhuda Hendra Setyawan Medicine, Gadjah Mada University, Yogyakarta, Indonesia
  • Bayu Ariwanto Physics, Airlangga University, Surabaya, Indoensia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.16936

Keywords:

Multi frequency, electrical impedance tomography, finite volume methods, rectangular geometry, breast cancer

Abstract

Electrical impedance tomography (EIT) is a non-invasive technique for imaging the electrical conductivity and permittivity in the body by measuring the electrical potential on the surface. One of the EIT applications in the medical field is breast cancer detection. The study proposed a rectangular geometry EIT multi-frequency device based on the Finite Volume Method (FVM) reconstruction method. This device can be used to complement mammography images into dual EIT-mammography modalities. The EIT device built of DDS AD9850 as a programmable multi-frequency sinusoidal generator, AD620 as instrument amplifier, AD536 as an AC converter, and ADS1115 as an ADC 16 bit. These devices can scan at the maximum frequency of 100 kHz. The device has been tested with a phantom of distilled water and carrots in the center and on the sides. The reconstruction methods one step different frequency produces a rectangular geometric image with anomalies in the depth and at the surface clearly.

References

Wu, Y., Hanzaee, F. F., Jiang, D., Bayford, R. H., Demosthenous, A. 2021. Electrical Impedance Tomography for Biomedical Applications: Circuits and Systems Review. IEEE Open Journal of Circuits and Systems. DOI: 10.1109/OJCAS.2021.3075302.

Kao, T. J., Saulnier, G. J., Xia, H., Tamma, C., Newell, J. C. and Isaacson, D. 2007. A Compensated Radiolucent Electrode Array for Combined EIT and Mammography. Physiological Measurement. 28(7): S291-S299.

DOI: //dx.doi.org/10.1088/0967-3334/28/7/S22.

Harikumar, R., Prabu, R., Raghavan, S. 2013. Electrical Impedance Tomography (EIT) and Its Medical Applications. International Journal of Soft Computing and Engineering (IJSCE). 3(4).

Ayati, S. B., Bouazza-Marouf, K., and Kerr, D. 2015. In Vitro Localisation of Intracranial Haematoma using Electrical Impedance Tomography Semi-array. Medical Engineering & Physics. 37(1): 34-41.

DOI: 10.1016/j.medengphy.2014.10.001.

Gao, J., Yue, S., Chen, J., and Wang, H. 2014. Classification of Normal and Cancerous Lung Tissues by Electrical Impendence Tomography. Bio-medical Materials and Engineering. 24(6): 2229-2241.

DOI: 10.3233/BME-141035.

Moqadam, S. M., Grewal, P. K., Haeri, Z., Ingledew, P. A. Kohli, K. and Golnaraghi, F. 2018. Cancer Detection based on Electrical Impedance Spectroscopy: A Clinical Study. Journal of Electrical Bioimpedance. 9: 17-23.

Xu, F., Li, M., Li, J., Jiang, H. 2021. Diagnostic Accuracy and Prognostic Value of Three-dimensional Electrical Impedance Tomography Imaging in Patients with Breast Cancer. Gland Surgery. 10(9): 2673-2685. DOI: 10.21037/gs-21-348.

Li, R., Gao, J., Li, Y., Wu, J., Zhao, Z., and Liu, Y. 2016. Preliminary Study of Assessing Bladder Urinary Volume using Electrical Impedance Tomography. Journal of Medical and Biological Engineering. 36(1): 71-79.

DOI: https://doi.org/10.1007/s40846-016-0108-1.

Bordes, J., Goutorbe, P., Cungi, P. J., Boghossian, M. C., and Kaiser, E. 2016. Noninvasive Ventilation during Spontaneous Breathing Anesthesia: An Observational Study using Electrical Impedance Tomography. Journal of Clinical Anesthesia. 34: 420-426.

DOI: https://doi.org/10.1016/j.jclinane.2016.04.016.

Proenca, M., Braun, F., Sola, J., Thiran, J. P., and Lemay, M. 2017. Noninvasive Pulmonary Artery Pressure Monitoring by EIT: a Model-based Feasibility Study. Medical & Biological Engineering & Computing. 55: 949-963.

DOI: https://doi.org/10.1007/s11517-016-1570-1.

Adler, A., Berthiaume, Y., Guardo, R., and Amyot, R. 1995. Imaging of Pulmonary Edema with Electrical Impedance Tomography. Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society. 557-558.

DOI: 10.1109/IEMBS.1995.575248.

Putensen, C., Hentze, B., Muenster, S., and Muders, T. 2019. Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. Journal of Clinical Medicine. 8(8): 1176. DOI: org/10.3390/jcm8081176.

Conway, J. 1987. Electrical Impedance Tomography for Thermal Monitoring of Hyperthermia Treatment: An Assessment using in Vitro and In Vivo Measurements. Clin. Phys, Physiol. Meas. 8(A): 141-146.

DOI: 10.1088/0143-0815/8/4a/018.

Pham, T. M. T., Yuill, M., Dakin, C., and Schibler, A. 2011. Regional Ventilation Distribution in the First 6 Months of Life. European Respiratory Journal (ERJ). 1(37): 4 919-924.

DOI: 10.1183/09031936.00034310.

Zain N. M., and Chelliah K. K. 2014. Breast imaging using electrical impedance tomography: correlation of quantitative assessment with visual interpretation. Asian Pacific Journal of Cancer Prevention. 15(3): 1327-1331.

DOI: 10.7314/apjcp.2014.15.3.1327.

Holder, D., S., Rao, A., and Hanquan, Y. 1996. Imaging of Physiologically Evoked Responses by Electrical Impedance Tomography with Cortical Electrodes in the Anaesthetized Rabbit. Physiol. Meas. 17: A179-A186.

DOI: 10.1088/0967-3334/17/4a/022.

Zhou, Z., Nan, L., Hui, X., Jin, G., Zhaolin, S., Haijun, L., Hongqi, Y. 2012. The Design and Implementation of a Portable EIT Telemedicine System. International Conference on Intelligent System Design and Engineering Application, IEEE. 571-575.

DOI: 10.1109/ISdea.2012.741.

Hartinger, A. E., and Gagnon, H. 2012. EIT System and Reconstruction algorithm adapted for Skin Cancer Imaging. The 11th International Conference on Information Sciences, Signal Processing and their Applications. 798-803.

DOI: 10.1109/ISSPA.2012.6310662.

Bera, T. K., and Nagaraju, J. 2012. Multifrequency Electrical Impedance Tomography (EIT) System for Biomedical Imaging, IEEE.

DOI: 10.1109/SPCOM.2012.6290216.

Choi, M. H., Kao, T. J., Isaacson, D., Saulnier, G. J., and Newell, J. C. 2007. A Reconstruction Algorithm for Breast Cancer Imaging With Electrical Impedance Tomography in Mammography Geometry. IEEE Transactions on Biomedical Engineering. 54(4).

DOI: 10.1109/TBME.2006.890139.

Kao, T. J., Saulnier, G. J., Xia, H., Tamma, C., Newell, J. C. and Isaacson, D. 2007. A Compensated Radiolucent Electrode Array for Combined EIT and Mammography. Physiological Measurement. 28: S291-S299.

DOI: 10.1088/0967-3334/28/7/S22.

J. Zuluaga-Gomez, N. Zerhouni, Z. Al Masry, C. Devalland & C. Varnier. 2019. A Survey of Breast Cancer Screening Techniques: Thermography and Electrical Impedance Tomography. Journal of Medical Engineering & Technology. 1-16. DOI: 10.1080/03091902.2019.1664672.

Ain, K., Wibowo, R. A., Soelistionot, S. 2017. Modeling of Electrical Impedance Tomography to Detect Breast Cancer by Finite Volume Methods. Journal of Physics: Conf. Series. 853: 012001.

O'Callaghan, S., Walsh, M., McGloughlin, T. 2003. Comparison of Finite Volume, Finite Element and Theoretical Predictions of Blood Flow through an Idealised Femoral Artery. Summer Bioengineering Conference. Sonesta Beach Resort in Key Biscayne, Florida.

Fallah, N. A., Bailey, C., Cross, M., and Taylor, G. A. 2000. Comparison of Finite Element and Finite Volume Methods Application in Geometrically Nonlinear Stress Analysis. Applied Mathematical Modelling. 24: 439-455.

DOI: https://doi.org/10.1016/S0307-904X(99)00047-5.

Molina-Aiz, F. D., Fatnassi, A, H., Boulard, T., Roy, J. C., and Valera, D. L. 2010. Comparison of finite Element and finite Volume Methods for Simulation of Natural Ventilation in Greenhouses. Computers and Electronics in Agriculture. 72: 69-86.

DOI: https://doi.org/10.1016/j.compag.2010.03.002.

Arisandi, E. D. 2015. Design and Development of Low Cost Flight Termination System Encoder based on Dds Ad9850 for Flight Vehicle. Proceedings of International Seminar of Aerospace Science and Technology III. 52-58.

Amin, N., Rayhan, S., Anik, A. A., Jameel, R. 2016. Modelling and Characterization of Cell Abnormality using Electrical Impedance Spectroscopy (EIS) System for the Preliminary Analysis to Predict Breast Cancer. Proceedings of International Conference on Research Intellegence and Communacation.

Packham, B., Koo, H., Romsauerova, A., Ahn, S., Mcewan, A., Jun, S. C., and Holder, D. S. 2012. Comparison of Frequency Difference Reconstruction Algorithms for the Detection of Acute Stroke using EIT in a Realistic Head-shaped Tank. Physiol. Meas. 33: 767-786.

Borsic, A. 2002. Regularisation Methods for Imaging from Electrical Measurements. A Thesis of Philosophy Doctor. Oxford Brookes University.

Chen, X. Y., Wang, H. X., Newell, J. 2011. Lung Ventilation Reconstruction by Electrical Impedance Tomography Based on Physical Information. 3rd International Conference on Measuring Technology and Mechatronics Automation, IEEE Computer Society.

Downloads

Published

2022-01-27

Issue

Section

Science and Engineering

How to Cite

DEVELOPMENT OF MULTI FREQUENCY ELECTRICAL IMPEDANCE TOMOGRAPHY FOR RECTANGULAR GEOMETRY BY FINITE VOLUME METHODS. (2022). Jurnal Teknologi, 84(2), 9-15. https://doi.org/10.11113/jurnalteknologi.v84.16936