EFFECT OF HBN FILLERS ON RHEOLOGY PROPERTY AND SURFACE MICROSTRUCTURE OF ABS EXTRUDATE

Authors

  • Kok-Tee Lau Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0003-0635-6414
  • Mastura Mohammad Taha Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Norhanani Hidayati Abd Rashid Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Devaki Manogaran Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Nazri Ahmad Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.16963

Keywords:

Additive Manufacturing, Fused Deposition Modeling (FDM), Hexagonal Boron Nitride (hBN), Fused Filament Fabrication (FFF), Rheology

Abstract

ABS filament remains an important feeding material for fused deposition manufacturing (FDM). However, ABS tends to experience warping after printing. The current paper investigates the effect of hBN fill on rheology property and diameter of ABS extrudate. ABS filled hBN composite was prepared by a facile solution mixing method. Rheological characterisation by capillary rheometer shows that ABS filled 5 wt% hBN composite exhibited a higher shear viscosity than the pure ABS. hBN addition appears to increase the shear viscosity of ABS by 62% at the shear rate of 200 s-1, but the increase was reduced to 20% at 1000 s-1. ABS-hBN extrudate surface microstructure deteriorated lesser than ABS extrudate when the shear rate increased up to 1000s-1. SEM micrograph of ABS-hBN extrudate’s surface exhibited less sharkskin feature but its swell percentage is 5.4% higher than the ABS extrudate. The addition of hBN fillers resulted in higher shear viscosity and percentage of ABS die swell but exhibited less sharkfin feature (smoother surface) on extrudate surface than the pure ABS.

References

Coakley, M., and Hurt, D. E. 2016. 3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware. Journal of Laboratory Automation. 21(4): 489-495.

DOI: https://doi.org/10.1177/2211068216649578.

Kochesfahani, S. H. 2016. Improving PLA-based Material for FDM 3D-printers using Minerals (Principles and Method Development). Proceedings of the Society of Plastics Engineers Annual Technical Conference. 1958-1614.

Ramli, F. R., and Nazan, M. A. 2017. Layer Adhesion Study of Plant Bio-adhesive to Reduce Curling Effect in 3D Printer. Proceedings of SAKURA Symposium on Mechanical Science and Engineering. 1-2.

Schmutzler, C., Zimmermann, A., and Zaeh, M. F. 2016. Compensating Warpage of 3D Printed Parts using Free-Form Deformation. Procedia CIRP. 41: 1017-1022.

DOI: https://doi.org/10.1016/j.procir.2015.12.078.

Schmutzler, C., Bayerlein, F., Janson, S., Seidel, C., and Zaeh, M. F. 2016. Pre-compensation of Warpage for Additive Manufacturing. Journal of Mechanics Engineering and Automation. 6(8): 392-399.

DOI: https://doi.org/10.17265/2159-5275/2016.08.002.

Fujiwara, T., Hattori, T., Inagaki, J., Kuninobu, T., Takizawa, K., Agari, Y., Hirano, H., Kadota, J., and Okada, A. 2019. Composition for Heat-dissipating Member, Heat-dissipating Member, Electronic Instrument, and Method for Producing Heat-dissipating Member. US Patent Application. US 201716081430 A. 2019/01/24.

Takeda, G., and Taniguchi, Y. 2020. Boron Nitride Aggregated Grain, Method for Producing Same, and Thermally Conductive Resin Composition using Same. US Patent Application. US 2020/0040245 A1.

Wang, J., Zhang, D., Zhang, Y., Cai, W., Yao, C., Hu, Y., and Hu, W. 2019. Construction of Multifunctional Boron Nitride Nanosheet Towards Reducing Toxic Volatiles (CO and HCN) Generation and Fire Hazard of Thermoplastic Polyurethane. Journal of Hazardous Materials. 362: 482-494.

DOI: https://doi.org/10.1016/j.jhazmat.2018.09.009.

Woosley, S., Abuali Galehdari, N., Kelkar, A., and Aravamudhan, S. 2018. Fused Deposition Modeling 3D Printing of Boron Nitride Composites for Neutron Radiation Shielding. Journal of Materials Research. 33(22): 3657-3664. DOI: https://doi.org/10.1557/jmr.2018.316.

Liu, J., Li, W., Guo, Y., Zhang, H., and Zhang, Z. 2019. Improved Thermal Conductivity of Thermoplastic Polyurethane via Aligned Boron Nitride Platelets Assisted by 3D Printing. Composites Part A: Applied Science and Manufacturing. 120: 140-146.

DOI: https://doi.org/10.1016/j.compositesa.2019.02.026.

Geng, Y., He, H., Jia, Y., Peng, X., and Li, Y. 2019. Enhanced Through‐plane Thermal Conductivity of Polyamide 6 Composites with Vertical Alignment of Boron Nitride Achieved by Fused Deposition Modeling. Polymer Composites. 40(9): 3375-3382.

DOI: https://doi.org/10.1002/pc.25198.

Fischer, A. J., Zhong, Y., Zhang, L., Wu, W., and Drummer, D. 2019. Heat Propagation in Thermally Conductive Polymers of PA6 and Hexagonal Boron Nitride. Fire and Materials. 43(8): 928-935.

DOI: https://doi.org/10.1002/fam.2753.

360 Research Reports 2020. Global Thermal Management Market Size, Manufacturers, Supply Chain, Sales Channel And Clients, 2020-2026. Maharashtra, India.

Quill, T. J., Smith, M. K., Zhou, T., Baioumy, M. G. S., Berenguer, J. P., Cola, B. A., Kalaitzidou, K., and Bougher, T. L. 2018. Thermal and Mechanical Properties of 3D Printed Boron Nitride–ABS Composites. Applied Composite Materials. 25(5): 1205-1217.

DOI: https://doi.org/10.1007/s10443-017-9661-1.

Rauwendaal, C. 2014. Polymer Extrusion. 5th Edition. Munich: Carl Hanser Verlag.

Menczel, J. D., Judovits, L., Prime, R. B., Bair, H. E., Reading, M., and Swier, S. 2009. Differential Scanning Calorimetry (DSC). in Menczel, J. D., and Prime, R. B. (eds.). Thermal Analysis of Polymers. New Jersey: John Wiley & Sons.

Ke, K., Wang, Y., Liu, X.-Q., Cao, J., Luo, Y., Yang, W., Xie, B.-H., and Yang, M.-B. 2012. A Comparison of Melt and Solution Mixing on the Dispersion of Carbon Nanotubes in a Poly (Vinylidene Fluoride) Matrix. Composites Part B: Engineering. 43(3): 1425-1432.

DOI: https://doi.org/10.1016/j.compositesb.2011.09.007.

Fallon, J. J., McKnight, S. H., and Bortner, M. J. 2019. Highly Loaded Fiber Filled Polymers for Material Extrusion: A Review of Current Understanding. Additive Manufacturing. 30: 100810.

DOI: https://doi.org/10.1016/j.addma.2019.100810.

Narayanasamy, J., Lau, K.-T., and Zaimi, M. 2016. Transistor Package's Boron Nitride Film Microstructure and Roughness: Effect of EPD Suspensions' pH and Binder. Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 8(2): 99-104.

IPC 1994. IPC-TM-650 Test Method Manual 2.4.25 Glass Transition Temperature and Cure Factor by DSC.

van Krevelen, D., and te Nijenhuis, K. 2009. Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions. 4th ed. Amsterdam: Elsevier.

Duh, Y.-S., Ho, T.-C., Chen, J.-R., and Kao, C.-S. 2010. Study on Exothermic Oxidation of Acrylonitrile-Butadiene-Styrene (ABS) Resin Powder with Application to ABS Processing Safety. Polymers. 2(3): 174-187.

DOI: https://doi.org/10.3390/polym2030174.

Oral, M. A., Ersoy, O. G., and Serhatli, E. İ. 2018. Effect Of Acrylonitrile–Butadiene–Styrene/Polyethylene Terephthalate Blends on Dimensional Stability, Morphological, Physical and Mechanical Properties and After Aging at Elevated Temperature. Journal of Plastic Film & Sheeting. 34(4): 394-417.

DOI: https://doi.org/10.1177/8756087918768348.

Han, S. N. M. F., Taha, M. M., and Mansor, M. R. 2019. Thermal and Melt Flow Behaviour of Kenaf Fibre Reinforced Acrylonitrile Butadiene Styrene Composites for Fused Filament Fabrication. Defence S&T Technical Bulletin. 12(2): 238-246.

Penumakala, P. K., Santo, J., and Thomas, A. 2020. A Critical Review on the Fused Deposition Modeling of Thermoplastic Polymer Composites. Composites Part B: Engineering. 201: 108336.

DOI: https://doi.org/10.1016/j.compositesb.2020.108336.

Cooper, J. L., and Potts, M. W. 2001. Pinhole-resistant Extrusion Method. US Patent Application. US 6,228,201 B1.

Vlachopoulos, J., and Strutt, D. 2004. The Role of Rheology in Polymer Extrusion. Extrusion Minitec & Conference: From Basics to Recent Developments, 2004. 107-132.

Downloads

Published

2022-05-30

Issue

Section

Science and Engineering

How to Cite

EFFECT OF HBN FILLERS ON RHEOLOGY PROPERTY AND SURFACE MICROSTRUCTURE OF ABS EXTRUDATE . (2022). Jurnal Teknologi, 84(4), 175-182. https://doi.org/10.11113/jurnalteknologi.v84.16963