OPTIMISATION OF BIOMASS, LIPID AND CARBOHYDRATE PRODUCTIVITIES IN Chlorella vulgaris FOR BIOFUEL PRODUCTION
DOI:
https://doi.org/10.11113/jurnalteknologi.v84.17079Keywords:
Chlorella vulgaris, Optimisation, Lipid, Carbohydrate, BiofuelAbstract
Synthesis of lipid and carbohydrate in microalgae simultaneously is essential for cost-effective microalgae-based biofuel production. Statistical optimisation approaches of the Plackett–Burman design (PBD) and central composite design (CCD) were applied to optimise the biomass, lipid, and carbohydrate productivities of the C. vulgaris UPSI-JRM01. The results obtained from PBD shown that NO3- concentration, light intensity and NaHCO3 concentration were the significant factors that affecting biomass productivity. Through CCD, optimum biomass, lipid, and carbohydrate productivities were obtained at 401.81 mg/L NO3–, 11238.20 lux light intensity, and 0.30 g/L NaHCO3, achieving the highest biomass productivity of 404.24 mg/L/day, highest lipid productivity of 65.3 mg/L/day, and highest carbohydrate productivity of 165.43 mg/L/day. The major fatty acid methyl esters (FAMEs) produced were palmitic acid (33.54%) and linoleic acid (30.29%), thus producing microalgae-based biodiesel with properties complying with international biodiesel standards.
References
Ashokkumar, V., Salam, Z., Tiwari, O.N., Chinnasamy, S., Mohammed, S., & Ani, F. N. 2015. An Integrated Approach for Biodiesel and Bioethanol Production from Scenedesmus bijugatus Cultivated in a Vertical Tubular Photobioreactor. Energy Conversion and Management. 101: 778-786. DOI: 10.1016/j.enconman.2015.06.006.
Sakarika, M., & Kornaros, M. 2019. Chlorella vulgaris as a Green Biofuel Factory: Comparison between Biodiesel, Biogas and Combustible Biomass Production. Bioresource Technology. 273: 237-243. DOI: 10.1016/j.biortech.2018.11.017.
Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. 2014. Nitrogen Stress Triggered Biochemical and Morphological Changes in the Microalgae Scenedesmus sp. CCNM 1077. Bioresource Technololgy. 156: 146-154. DOI: 10.1016/j.biortech.2014.01.025.
Nordin, N., Yusof, N., Nadzir, S. M., Yusoff, M. Z. Y., & Hassan, M. A. 2019. Effect of Photo-autotrophic Cultural Conditions on the Biomass Productivity and Composition of Chlorella vulgaris. Biofuels. 1-10. DOI:10.1080/17597269.2019.1652787.
Cheng, D., Li, D., Yuan, Y., Zhou, L., Li, X., Wu, T., Wang, L., Zhao, Q., Wei, W., & Sun, Y. 2017. Improving Carbohydrate and Starch Accumulation in Chlorella sp. AE10 by a Novel Two-stage Process with Cell Dilution. Biotechnology for Biofuels. 10(1): 1-14. DOI: 10.1186/s13068-017-0753-9.
Rai, M. P., Gautom, T., & Sharma, N. 2015. Effect of Salinity, pH, Light Intensity on Growth and Lipid Production of Microalgae for Bioenergy Application. OnLine Journal of Biological Sciences. 15(4): 260-267. DOI: 10.3844/ojbsci.2015.260.267.
Mubarak, M., Shaija, A., & Suchithra, T. V. 2019. Cost Effective Approach for Production of Chlorella pyrenoidosa: a RSM Based Study. Waste and Biomass Valorization. 10: 3307-3319. DOI: 10.1007/s12649-018-0330-x.
Dayana, Priyadharshini, S., & Bakthavatsalam, A. K. 2016. Optimization of Phenol Degradation by the Microalga Chlorella pyrenoidosa using Plackett-Burman Design and Response Surface Methodology. Bioresource Technology. 207: 150-156. DOI: 10.1016/j.biortech.2016.01.138.
Nordin, N., Yusof, N., & Samsudin, S. 2017. Biomass Production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in Nitrified Landfill Leachate. Waste and Biomass Valorization. 8(7): 2301-2311. DOI: 10.1007/s12649-016-9709-8.
Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. 2013. Characterization and Optimization of Carbohydrate Production from an Indigenous Microalga Chlorella vulgaris FSP-E. Bioresource Technology. 135: 157-165. DOI: 10.1016/j.biortech.2012.10.100.
Nan, Y., Liu, J., Lin, R., & Tavlarides, L. L. 2015. Production of Biodiesel from Microalgae Oil (Chlorella protothecoides) by Non-catalytic Transesterification in Supercritical Methanol and Ethanol: Process Optimization. The Journal of Supercritical Fluids. 97: 174-182. DOI: 10.1016/j.supflu.2014.08.025.
El-Kassas, H. Y., & Mohamed, L. A. 2014. Bioremediation of the Textile Waste Effluent by Chlorella vulgaris. The Egyptian Journal of Aquatic Research. 40(3): 301-308. DOI: 10.1016/j.ejar.2014.08.003.
Blair, M. F., Kokabian, B., & Gude, V. G. 2014. Light and Growth Medium Effect on Chlorella vulgaris Biomass Production. Journal of Environmental Chemical Engineering. 2(1): 665-674. DOI: 10.1016/j.jece.2013.11.005.
Li, L., Cui, J., Liu, Q., Ding, Y., & Liu, J. 2015. Screening and Phylogenetic Analysis of Lipid-rich Microalgae. Algal Research. 11: 381-386. DOI: 10.1016/j.algal.2015.02.028.
Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. 2011. Microalgae-novel Highly Efficient Starch Producers. Biotechnology and Bioengineering. 108(4): 766-776. DOI: 10.1002/bit.23016.
Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z. 2014. Metabolic Changes of Starch and Lipid Triggered by Nitrogen Starvation in the microalga Chlorella zofingiensis. Bioresource Technology. 152: 292-298. DOI: 10.1016/j.biortech.2013.10.092.
Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. 2009. Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties. Bioresource Technology. 100(1): 261-268. DOI: 10.1016/j.biortech.2008.06.039.
Arora, N., Patel, A., Pruthi, P.A., & Pruthi, V. 2015. Synergistic Dynamics of Nitrogen and Phosphorous Influences Lipid Productivity in Chlorella minutissima for Biodiesel Production. Bioresource Technology. 213: 79-87. DOI: 10.1016/j.biortech.2016.02.112.
Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Hadavand Mirzaei, H., Mirzajanzadeh, M., Malekzadeh Shafaroudi, S., & Bakhtiari, S. 2013. Fatty Acids Profiling: A Selective Criterion for Screening Microalgae Strains for Biodiesel Production. Algal Research. 2(3): 258-267. DOI: 10.1016/j.algal.2013.04.003.
Thomas, J., & Jayachithra, E. V. 2015. Growth Kinetics of Chlorococcum humicola - A Potential Feedstock for Biomass with Biofuel Properties. Ecotoxicology and Environmental Safety. 121: 258-262. DOI: 10.1016/j.ecoenv.2015.03.008.
Yadavalli, R., Rao, R. S., & Rao, C. S. 2013. Response Surface Methodological Approach to Optimize Process Parameters for the Biomass Production of Chlorella pyrenoidosa. International Journal of Bio-Technology & Research. 3(1): 37-48. DOI: 10.1080/15435075.2018.1529589.
Goncalves, E. C., Wilkie, A. C., Kirst, M., & Rathinasabapathi, B. 2016. Metabolic Regulation of Triacylglycerol Accumulation in the Green Algae: Identification of Potential Targets for Engineering to Improve Oil Yield. Plant Biotechnology Journal. 14(8): 1649-1660. DOI: 10.1111/pbi.12523.
Mallick, N., Mandal, S., Singh, A.K., Bishai, M., & Dash, A. 2012. Green Microalga Chlorella vulgaris as a Potential Feedstock for Biodiesel. Journal of Chemical Technology and Biotechnology. 87(1): 137-145. DOI: 10.1002/jctb.2694.
Kong, W. B., Hua, S. F., Cao, H., Mu, Y. W., Yang, H., Song, H., & Xia, C. G. 2012. Optimization of Mixotrophic Medium Components for Biomass Production and Biochemical Composition Biosynthesis by Chlorella vulgaris using Response Surface Methodology. Journal of the Taiwan Institute of Chemical Engineers. 43(3): 360-367. DOI: 10.1016/j.jtice.2011.11.007.
Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N., & Tredici, M. R. 2014. Chlorella for Protein and Biofuels: from Strain Selection to Outdoor Cultivation in a Green Wall Panel Photobioreactor. Biotechnology for Biofuels. 7: 1-12. DOI: 10.1186/1754-6834-7-84.
Dasgupta, C. N., Suseela, M. R., Mandotra, S. K., Kumar, P., Pandey, M. K., Toppo, K., & Lone, J. A. 2015. Dual Uses of Microalgal Biomass: An Integrative Approach for Biohydrogen and Biodiesel Production. Applied Energy. 146: 202-208. DOI: 10.1016/j.apenergy.2015.01.070.
Ramanna, L., Guldhe, A., Rawat, I., & Bux, F. 2014. The Optimization of Biomass and Lipid Yields of Chlorella sorokiniana When Using Wastewater Supplemented with Different Nitrogen Sources. Bioresource Technology. 168: 127-35. DOI: 10.1016/j.cherd.2014.05.012.
Han, F., Pei, H., Hu, W., Song, M., Ma, G., & Pei, R. 2015. Optimization and Lipid Production Enhancement of Microalgae Culture by Efficiently Changing the Conditions along with the Growth-state. Energy Conversion and Management. 90: 315-322. DOI: 10.1016/j.enconman.2014.11.032.
Yaşar, F., & Altun, Ş. 2018. Biodiesel Properties of Microalgae (Chlorella protothecoides) Oil for Use in Diesel Engines. International Journal of Green Energy. 15: 941-946. DOI: 10.1080/15435075.2018.1529589.
Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., Druzian, J. I., & Nascimento, I. A. 2013. From Waste to Energy: Microalgae Production in Wastewater and Glycerol. Applied Energy. 109: 283-290. Doi: 10.1016/j.apenergy.2013.04.023.
Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. 2018. The Potential of Microalgae in Biodiesel Production. Renewable & Sustainable Energy Reviews. 90(3): 336-346. DOI: 10.1016/j.rser.2018.03.073.
Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. 2017. Production, Characterization and Performance of Biodiesel as an Alternative Fuel in Diesel Engines – A Review. Renewable & Sustainable Energy Reviews. 72: 497-509. DOI: 10.1016/j.rser.2017.01.001.
Abe, M., Komatsu, H., Yamagiwa, K., & Tajima, H. 2018. Evaluation of the Separation of Saturated Fatty Acid Methyl Esters Obtained from Additive Winterization using a Nonionic Surfactant. Fuel. 214: 607-613. DOI: 10.1016/j.fuel.2017.11.066.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.