OPTIMAL TENSILE-SHEAR STRENGTH OF GALVANIZED/MILD STEEL (SPCC-SD) DISSIMILAR RESISTANCE SPOT WELDING USING TAGUCHI DOE

Authors

  • Sukarman - ᵃDepartement of Mechanical Engineering, Universitas Buana Perjuangan, Karawang, 41361, Karawang, West Java, Indonesia ᵇbDepartement of Mechanical Engineering, Sebelas Maret University, Surakarta, Jl. Ir Sutami No.36, Kentingan, Kec. Jebres, Central Java, 57126, Indonesia https://orcid.org/0000-0001-7464-6099
  • Khoirudin ᵃDepartement of Mechanical Engineering, Universitas Buana Perjuangan, Karawang, 41361, Karawang, West Java, Indonesia ᵇDepartement of Mechanical Engineering, Sebelas Maret University, Surakarta, Jl. Ir Sutami No.36, Kentingan, Kec. Jebres, Central Java, 57126, Indonesia https://orcid.org/0000-0003-3646-2138
  • Dodi Mulyadi Departement of Mechanical Engineering, Universitas Buana Perjuangan, Karawang, 41361, Karawang, West Java, Indonesia https://orcid.org/0000-0002-7539-9584
  • Nana Rahdiana Departement of Industrial Engineering, Universitas Buana Perjuangan, Karawang, 41361, Karawang, West Java, Indonesia https://orcid.org/0000-0002-1882-3959
  • Amri Abdulah ᵇDepartement of Mechanical Engineering, Sebelas Maret University, Surakarta, Jl. Ir Sutami No.36, Kentingan, Kec. Jebres, Central Java, 57126, Indonesia ᵈDepartement of Mechanical Engineering, Sekolah Tinggi Teknologi Wastukancana, Purwakarta, 41114, West Java, Indonesia
  • Rohman - Departement of Mechanical Engineering, Sekolah Tinggi Teknologi Wastukancana, Purwakarta, 41114, West Java, Indonesia
  • Choirul Anwar Departement of Mechanical Engineering, Sekolah Tinggi Teknologi Wastukancana, Purwakarta, 41114, West Java, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.17193

Keywords:

Hot-dipped galvanized, Resistance spot welding, Signal to noise ratio, Taguchi method, T-S strength

Abstract

This paper demonstrates the optimization of resistance spot welding on different connections of galvanized steel sheets and low carbon steels. The zinc coating on galvanized steel sheets will have an effect to reduce the welding ability in the resistance welding process. The practical Taguchi experimental technics were used by implemented adequately to optimize input factors, namely squeezing time, welding current, welding time and holding time. Statistical software implemented an analysis of variance (ANOVA) and multilinear regression to investigate and evaluate the significant input factors and compare them with the experimental output factors of resistance spot welding. The 'signal to noise ratio' (S/N ratio) results shows that the welding time and the welding current are the most significant factors on the output. The delta values ​​of welding time and welding current are 3.15 and 2.25, respectively. The ANOVA results showed that welding current and welding time are the most contributing factors by 23.5% and 51.4%, respectively. Taguchi recommends an optimal squeezing time of 20 cycles, a welding current of 27 kA, a welding time of 36 cycles, and a hold/cooling time of 15 cycles. The highest output reaches a tensile shear strength of 5762.04 N on the third iteration. The present research has successfully identified significant variable inputs for resistance spot welding, namely welding current and welding time. In the future, the relevant research may use our corresponding results to improve the RSW practical procedure for other significant impacts.

References

D. L. Olson, S. Thomas A., S. Liu, and G. R. Edwards. 1993. ASM Handbook Volume 6: Welding, Brazing, and Soldering ASM International.

H. C. Lin, C. A. Hsu, C. S. Lee, T. Y. Kuo, and S. L. Jeng. 2018 Effects of Zinc Layer Thickness on Resistance Spot Welding of Galvanized Mild Steel. J. Mater. Process. Tech. 251(March): 205-213. Doi: 10.1016/j.jmatprotec.2017.08.035.

M. K. Wahid, M. N. Muhammed Sufian, and M. S. Firdaus Hussin. 2017. Effect of Fatigue Test on Spot Welded Structural Joint. J. Teknol. 79(5-2): 95-99. Doi: 10.11113/jt.v79.11290.

N. T. Williams and J. D. Parker. 2004. Review of Resistance Spot Welding of Steel Sheets: Part 1 - Modelling and Control of Weld Nugget Formation. Int. Mater. Rev. 49(2): 45-75. Doi: 10.1179/095066004225010523.

H. Wiryosumarto and T. Okumura. 2000. Teknologi Pengelasan Logam. 8th ed. Jakarta: PT Pradnya Paramita.

Miller Electric Mfg. Co. 2012. Handbook for Resistance Spot Welding. [Online]. Available: www.MillerWelds.com.

A. G. Thakur and V. M. Nandedkar. 2014. Optimization of the Resistance Spot Welding Process of Galvanized Steel Sheet Using the Taguchi Method. Arab. J. Sci. Eng. 39(2): 1171-1176. Doi: 10.1007/s13369-013-0634-x.

S. Shafee, B. B. Naik, and K. Sammaiah. 2015. Resistance Spot Weld Quality Characteristics Improvement by Taguchi Method. Mater. Today Proc. 2(4-5): 2595-2604. Doi: 10.1016/j.matpr.2015.07.215.

K. Vignesh, A. E. Perumal, and P. Velmurugan. 2017. Optimization of Resistance Spot Welding Process Parameters and Microstructural Examination for Dissimilar Welding of AISI 316L Austenitic Stainless Steel and 2205 Duplex Stainless Steel. Int. J. Adv. Manuf. Technol. 455-465. Doi: 10.1007/s00170-017-0089-4.

O. Sherepenko et al. 2020. Influence of Surface Layers on Resistance Spot Joinability of Partially Hardened Steel 22MnB5 with Aluminum-silicon and Zinc Coatings. Weld. World. 64(5): 755-771. Doi: 10.1007/s40194-020-00864-9.

ASM Handbook. 1990. Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International.

American Welding Society. 2012. Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel (AWS D8.9M:2012). 7. Doi: 10.1017/CBO9781107415324.004.

Japanese Standards Association. 2005. JIS G 3141 Cold-Reduced Carbon Steel Sheets and Strips.

I. B. Rahardja, N. Rahdiana, D. Mulyadi, S. Sumanto, A. I. Ramadhan, and S. Sukarman. 2020. Analisis Pengaruh Radius Bending pada Proses Bending Menggunakan Pelat SPCC-SD Terhadap Perubahan Struktur Mikro. 01(01): 1-10.

JIS G 3302. 2007. JIS G 3302 Hot-dip Zinc-coated Steel Sheet and Strip. Japanese Industrial Standard.

Y. G. Kim, D. C. Kim, and S. M. Joo. 2019. Evaluation of Tensile Shear Strength for Dissimilar Spot Welds of Al-Si-Mg Aluminum Alloy and Galvanized Steel by Delta-spot Welding Process. J. Mech. Sci. Technol. 33(11): 5399-5405. Doi: 10.1007/s12206-019-1034-2.

S. Sukarman and A. Abdulah. 2021. Optimasi Parameter Resistance Spot Welding pada Pengabungan Baja Electro-galvanized Menggunakan Metode Taguchi. Din. Tek. Mesin, 11(1): 39-48. Doi: https://doi.org/10.29303/dtm.v11i1.372.

S. Sukarman, A. Abdulah, D. A. Rajab, and C. Anwar. 2020. Optimization of Tensile-shear Strength in the Dissimilar Joint of Zn-Coated Steel and Low Carbon Steel. Automot. Exp. 3(3): 115-125. Doi: https://doi.org/10.31603/ae.v3i3.4053.

A. Abdulah and S. Sukarman. 2020. Optimasi Single Response Proses Resistance Spot Welding. Multitek Indones. J. Ilm. 6223(2): 69-79.

V. V.D. Sahithi, T. Malayadri, and N. Srilatha. 2019. Optimization of Turning Parameters on Surface Roughness based on Taguchi Technique. Mater. Today Proc. 18: 3657-3666. Doi: 10.1016/j.matpr.2019.07.299.

S. T. Pasaribu, S. Sukarman, A. D. Shieddieque, and A. Abdulah. 2019. Optimasi Parameter Proses Resistance Spot Welding pada Pengabungan Beda Material SPCC. September.

D. Ren, D. Zhao, L. Liu, and K. Zhao. 2019. Clinch-resistance Spot Welding of Galvanized Mild Steel to 5083 Al Alloy. Int. J. Adv. Manuf. Technol. 101(1-4): 511-521. Doi: 10.1007/s00170-018-2854-4.

P. G. Mathews. 2005. Design of Experiments with MINITAB, 12th ed. 60(2). Milwaukee: Mathews, Paul G. Doi: 10.1198/tas.2006.s46.

A. Budianto, S. Sukarman, S. B. Jumawan, and A. Abdulah. 2020. Optimasi Respon Tunggal pada Proses Texturing Benang DTY-150D / 96F Menggunakan Metode Taguchi Single Response Optimization of DTY-150D / 96F Yarn Texturing Process Using Taguchi Method. Arena Tekst. 35(2): 77-86.

S. Sukarman, A. D. Shieddieque, C. Anwar, N. Rahdiana, and A. I. Ramadhan. 2021. Optimization of Powder Coating Process Parameters in Mild Steel (Spcc-Sd) to Improve Dry Film Thickness. J. Appl. Eng. Sci. 19(2): 1-9. Doi: 10.5937/jaes0-26093.

C. Jithendra and S. Elavenil. 2020. Influences of Parameters on Slump Flow and Compressive Strength Properties of Aluminosilicate Based Flowable Geopolymer Concrete Using Taguchi Method. Silicon. 12(3): 595-602. Doi: 10.1007/s12633-019-00166-w.

P. S. Thakare, S. M. Salodkar, and C. C. Handa. 2019. Experimental Investigation of Three-roller Bending Operation for Multi-pass Cylindrical Forming of Plates. Mater. Today Proc. 18: 2779-2786. Doi: 10.1016/j.matpr.2019.07.143.

N. Den Uijl, F. Azakane, S. Kilic, and V. Docter. 2012. Performance of tensile Tested Resistance Spot and Laser Welded Joints at Various Angles. Weld. World. 56(11-12): 143-152. Doi: 10.1007/BF03321404.

J. Liu, G. Xu, X. Gu, and G. Zhou. 2015. Ultrasonic Test of Resistance Spot Welds based on Wavelet Package Analysis. Ultrasonics. 56: 557-565. Doi: 10.1016/j.ultras.2014.10.013.

A. G. Thakur, T. E. Rao, M. S. Mukhedkar, and V. M. Nanedkar. 2010. Application of Taguchi Method for Resistance Spot Welding of Galvanized Steel. 5(11). [Online]. Available: www.aprnjournals.com.

A. K. Biradar and B. M. Dabade. 2019. Optimization of Resistance Spot Welding Process Parameters in Dissimilar Joint of MS and ASS 304 Sheets. Mater. Today Proc. 26: 1284-1288. Doi: 10.1016/j.matpr.2020.02.256.

N. Rosli et al. 2015. Tri-Objective Optimization Of Carbon Steel Spot-Welded Joints. 1: 1-6.

Downloads

Published

2023-06-25

Issue

Section

Science and Engineering

How to Cite

OPTIMAL TENSILE-SHEAR STRENGTH OF GALVANIZED/MILD STEEL (SPCC-SD) DISSIMILAR RESISTANCE SPOT WELDING USING TAGUCHI DOE. (2023). Jurnal Teknologi, 85(4), 167-177. https://doi.org/10.11113/jurnalteknologi.v85.17193