Estimating Kinetic Parameters for Essential Amino Acid Production in Arabidopsis Thaliana by Using Particle Swarm Optimization
DOI:
https://doi.org/10.11113/jt.v64.1737Keywords:
Parameter estimation, PSO, SBToolbox, Arabidopsis ThalianaAbstract
Parameter estimation is one of nine phases in modelling, which is the most challenging task that is used to estimate the parameter values for biological system that is non-linear. There is no general solution for determining the nonlinearity of the dynamic model. Experimental measurement is expensive, hard and time consuming. Hence, the aim for this research is to implement Particle Swarm Optimization (PSO) intoSBToolbox to solve the mentioned problems. As a result, the optimum kinetic parameters for simulating essential amino acid metabolism in plant model Arabidopsis Thaliana are obtained. There are four performance measurements used, namely computational time, average of error rate, standard deviation and production of graph. As a finding of this research, PSO has the smallest standard deviation and average of error rate. The computational time in parameter estimation is smaller in comparison with others, indicating that PSO is a consistent method to estimate parameter values compared to the performance of Simulated Annealing (SA) and downhill simplex method after the implementation into SBToolbox.
Â
References
A. Abdullah, S. Deris, S. Anwar, S. N. V. Arjunan. 2013. An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters. PLOS ONE. 8(3): 1–16.
I. C. Chou, E.O. Voit. 2009. Recent Developments in Parameter Estimation and Structure Identification of Biochemical and Genomic Systems. Mathematical Biosciences. 219: 57–83.
S. Sridharan, S. Gunawan. 2010. Parameter Identifiability of Power-law Biochemical System Models. Journal of Biotechnology. 149(3).132–140.
M.P. Little, W.F. Heidenreich, G. Li. 2010. Parameter Identifiability and Redundancy: Theoretical Considerations. PLOS ONE. 5(1): 1–6.
N. Tutkun. 2009. Parameter Estimation in Mathematical Models Using the Real Coded Genetic Algorithms. Expert Systems with Applications, 36(2 part 2): 3342–3345.
K. E. Parsopoulos, M. N.Vrahatis. 2010. Particle Swarm Optimization and Intelligence. New York: Hersey.
S. M. Baker, K. Schallau, B. H. Junker. 2010. Comparison of Different Algorithms for Simultaneous Estimation of Multiple Parameters in Kinetic Metabolic Models. Journal of Integrative Bioinformatics. 7(3): 133.
C. R. Houck, J. A. Joines, M. G. Kay. 1995. A Genetic Algorithm for Function Optimization: A Matlab Implementation. Technical Report: NCSU-IE-TR-95-09, North Carolina State University, Raleigh, NC.
E. Aarts, J. Korst. 1989. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. New York: John Wiley & Sons.
J. Nelder, R. Mead. 1965. The Downhill Simplex Method. Computer Journal. 7: 308–313.
R. Eberhart, Y. Shi. 2001. Particle Swarm Optimization: Developments, Applications and Resources. Proc. Congress on Evolutionary Computation, Service Center, Piscataway, NJ. Seoul, Korea.
J. Kennedy, R. Eberhart. 1995. Particle Swarm Optimization. Proc. of IEEE International Conference on Neural Networks (ICNN), Perth, Australia.
G. Curien, O. Bastien , M. Robert-Genthon, A. Cornish-Bowden, M.L. Cárdenas, R. Dumas. 2009. Understanding the Regulation of Aspartate Metabolism Using a Model Based on Measured Kinetic Parameters. Mol. Syst. Biol. 5(271): 1–32.
H. Schmidt, M. Jirstrand. 2005. Systems Biology Toolbox for MATLAB: A Computational Platform for Research in Systems Biology, Bioinformatics. 22(4): 514–515.
D. L. Nelson, M.M. Cox, A. L. Lehninger. 2000. Principles of Biochemistry. New York: Worth Publishing.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.