MORPHOLOGICAL BEHAVIOR OF FEB AND FE2B IN BORIDE LAYER OF 304 STAINLESS STEEL UNDER DIFFERENT MEDIUM

Authors

  • Bulan Abdullah School of Engineering, UiTM Shah Alam, 41450, Shah Alam, Selangor, Malaysia
  • Siti Khadijah Alias Faculty of Mechanical Engineering, UiTM Johor Branch, Pasir Gudang Campus, 81750, Masai, Johor, Malaysia https://orcid.org/0000-0002-7410-9266
  • Mohd Noor Halmy Ab Latif Faculty of Mechanical Engineering, UiTM Johor Branch, Pasir Gudang Campus, 81750, Masai, Johor, Malaysia
  • Nurulnatisya Ahmad Faculty of Mechanical Engineering, UiTM Johor Branch, Pasir Gudang Campus, 81750, Masai, Johor, Malaysia
  • Syidatul Akma Sulaiman Faculty of Mechanical Engineering, UiTM Johor Branch, Pasir Gudang Campus, 81750, Masai, Johor, Malaysia
  • Siti Najihah Rahmat Faculty of Mechanical Engineering, UiTM Johor Branch, Pasir Gudang Campus, 81750, Masai, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17374

Keywords:

FeB, Fe2B, 304 stainless steel, surface attrition, morphological behavior

Abstract

This study investigates the morphological behavior of FeB and Fe2B phase in boronized 304 stainless steel under two different mediums which is powder and paste. Surface attrition was implemented in order to initiate better boron diffusivity. The comparison of microstructure in term of grain size and boride layer thickness were also analyzed. Scanning electron microscopy, X-Ray diffraction analysis and energy dispersive X-Ray Analysis were conducted to prove the existence of FeB and Fe2B phases. The relationship between the phase and Vickers microhardness was also investigated. The results show formation of flat-toothed boride layer in both sample with different FeB and Fe2B layer uniformity. Paste boronized sample with120 µm boride layer thickness had outperformed the powder boronized sample that with 43 µm boride layer thickness, thus providing significant improvement in microhardness values from 1500 Hv to 1800 Hv. In conclusion, paste medium provide outstanding boride layer thickness with 300% enhancement and excellent microhardness with 20% improvement. The results of this findings could offer a new insight in pack boronizing of stainless steel that can be complicated to boronized due to its high alloying element content. 

References

Delai, O., Xia, C., Shiqiang, L. 2021. Growth Kinetics of the FeB/Fe2B Boride Layer on the Surface of 4Cr5MoSiV1 Steel: Experiments and Modelling. J. Mater. Res. Technol. 11: 1272-1280.

Alias, S. K., Ahmad, S., Abdullah, B., Pahroraji, H. F., Hamami, G. 2016. Effect of Temperature Variation on Wear Behaviour of Austenitic Stainless Steel. IOP Conf. Ser.: Mater. Sci. Eng. 160 012026.

Ruiz-Trabolsi, P. A., Velázquez J. C., Orozco-Álvarez, C., Carrera-Espinoza, R., Yescas-Hernández, J. A., González-Arévalo, N. E., and Hernández-Sánchez, E. 2021. Kinetics of the Boride Layers Obtained on AISI 1018 Steel by Considering the Amount of Matter Involved. Coatings. 11: 259.

Cihangir, T. S. and Hayat, F. 2022. The Effects of Boriding Process on Tribological Properties and Corrosive Behavior of a Novel High Manganese Steel. Journal of Materials Processing Technology. 300: 117421.

Abdullah, B., Basir, M. H., Yusof, K., Alias, S. K., and Idham, F. 2019. The Improvement of Wear Characteristics on 316L Stainless Steel by Dual Surface Treatment Method. International Journal of Engineering and Advanced Technology (IJEAT). 9: 1.

Yan-Wei, Z., Quan, Z., Lygdenov, B., Guriev, A. M., Shun-Qi, M. 2019. Research on the Technology of Paste Boronizing for H13 Die Steel. IOP Conference Series: Materials Science and Engineering. 684(1): 012007.

Ortiz-Dom´ınguez, M., G´omez-Vargas, O. A., Ares de Parga, G., Torres-Santiago, G., Vel´azquez-Mancilla, R., Castellanos-Escamilla, V. A., Mendoza-Camargo, V. and Trujillo-S´anchez, R. 2019. Modeling of the Growth Kinetics of Boride Layers in Powder-Pack Borided ASTM A36 Steel Based on Two Different Approaches. Hindawi Advances in Materials Science and Engineering. 2019: 5985617. https://doi.org/10.1155/2019/5985617.

Toktaş A., Toktaş G. and Gülsün K. 2018. Effect Of Boronizing Parameters and Matrix Structures on the Wear Property of Ductile Iron. International Scientific Journal Machines Technologies Materials XII(1): 33-36.

Keddam, M., Hudáková, M., Ptačinová, J., Moravčík, R., Gogola, P., Gabalcová, Z., Jurči, P. 2021. Characterization of Boronized Layers on Vanadis 6 Tool Steel. Surface Engineering. 37(4): 445-454.

Çetin, M., Günen, A., Kalkandelen, M., Karakas, M. S. 2021. Microstructural, Wear and Corrosion Characteristics of Boronized AISI 904L Superaustenitic Stainless Steel. Vacuum. 187: 110145.

Resendiz Calderon, C. D., Farfan-Cabrera, L. I., Rodrı´guez-Castro, G. A., and Ezequiel Gallardo Hernandez. E. A. 2021. Micro-abrasion/Corrosion Behavior of Pack-borided AISI 316L Steel and ASTM F1537 CoCrMo Alloy in Ceramic-on-Ceramic Couplings. JMEPEG. 30: 3955-3967.

García-Léon, R. A., Martínez-Trinidad, J., Campos-Silva. I., Wong-Angel, W. 2020. Mechanical Characterization of the AISI 316L Alloy Exposed to Boriding Process. DYNA. 87(213): 34-41.

Perrusquia, N. P., Doñu Ruiz, M. A., García Bustos, E. D., Martínez, M. L., Urriolagoitia Calderón, G. M, Torres San Migueld. C. R. 2020. Duplex Surface Treatment on Microalloy Steels by Dehydrated Paste Pack Boriding and Pack Carburizing. Materials Letters. 280:128573.

Turkmen, I. and Korkmaz, A. 2021. Microstructural and Mechanical Characterization of Powder-pack Boronized Incoloy A286 Superalloy. Surface Topography: Metrology and Properties. 9: 015002.

Bashir, M. H., Abdullah, B., Alias, S. K., Jumadin, M. H. and Ismail, M. H. 2015. Analysis on Microstructure, Hardness and Surface Roughness of Shot Blasted Paste Boronized 316 Stainless Steels. Jurnal Teknologi. 76(3): 75-79.

Clément, D., Marc, N., Mandana, A., Roxane, M., Philippe, B., Yves, N. and Thierry, G. 2020. On the Influence of Ultrasonic Surface Mechanical Attrition Treatment (SMAT) on the Fatigue Behavior of the 304L Austenitic Stainless Steel. Metal. 10(1): 100.

Hernández-Sánchez, E., and Velázquez., J. C. 2017. Kinetics of Growth of Iron Boride Layers on a Low-carbon Steel Surface. Chapter 3. Laboratory Unit Operations and Experimental Methods in Chemical Engineering. DOI: 10.5772/intechopen.73592.

Daas, A., Allaoui, L. A., Zidelmel, S., Allaoui, O. 2020. Paste Borided Layers Produced on XC38 Steel Using a New Activator. Materials Performance and Characterization. 9(3)

Haris, N. A., Alias, S. K., Abdullah, B., Pahroraji, H. P. and Najmie, A. 2016. Abrasion And Erosion Wear Properties of Surface Deformed Stainless Steel. ARPN Journal of Engineering and Applied Sciences. 11(12).

Belaid, M., Fares, M. L., Assalla, O and Boukari, F. 2022. Surface Characterization of a Modified Cold Work Tool Steel Treated by Powder-pack Boronizing. Materialwiss Werkstofftech. 53: 15-38.

Alias, S. K., Halmy, M. N., Shah, M. A. M., Ahmad, N. N., Sulaiman, S. A. Pahroraji, H. F., Abdullah, B. 2020. Effect of Surface Attrition on Hardness on the Hardness and Wear Properties of 304 Stainless Steels. IOP Conf. Ser.: Mater. Sci. Eng. 834 012058.

Keddam, M. and Jurči, P. 2022. Assessment of Boron Diffusivities in Nickel Borides by Two Mathematical Approaches. Materials. 15(2): 555.

Ahmed, M. A., Khaled, M., Tarek, M., Mostafa, R. A. 2021. Novel Boriding Technique of Low-carbon Steel Weldments. J. Phys.: Conf. Ser. 2128: 012-032.

Downloads

Published

2022-03-31

Issue

Section

Science and Engineering

How to Cite

MORPHOLOGICAL BEHAVIOR OF FEB AND FE2B IN BORIDE LAYER OF 304 STAINLESS STEEL UNDER DIFFERENT MEDIUM. (2022). Jurnal Teknologi, 84(3), 143-150. https://doi.org/10.11113/jurnalteknologi.v84.17374