DEVELOPMENT OF CASCADED VOLTAGE DOUBLER RECTIFIER FOR RF ENERGY HARVESTING

Authors

  • Ismahayati Adam Fakulti Teknologi Kejuruteraan Elektronik, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia bUniversiti Kuala Lumpur Malaysian Institute of Marine Engineering Technology, 32200 Lumut, Perak, Malaysia https://orcid.org/0000-0002-8393-1534
  • Mohd Najib Mohd Yasin Fakulti Teknologi Kejuruteraan Elektronik, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia bUniversiti Kuala Lumpur Malaysian Institute of Marine Engineering Technology, 32200 Lumut, Perak, Malaysia https://orcid.org/0000-0001-5142-3335
  • Siti Zuraidah Ibrahim Fakulti Teknologi Kejuruteraan Elektronik, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia bUniversiti Kuala Lumpur Malaysian Institute of Marine Engineering Technology, 32200 Lumut, Perak, Malaysia
  • Norshakila Haris Universiti Kuala Lumpur Malaysian Institute of Marine Engineering Technology, 32200 Lumut, Perak, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17405

Keywords:

ISM band, multistage, rectifier circuit, RF energy harvesting, schottky diode, voltage doubler

Abstract

Radio Frequency (RF) energy harvesting is a process where RF energy from the ambient source is collected and converted into an electrical energy by using a rectifier circuit. However, the collected RF energy only supplies very low input power. Therefore, it is important to design a circuit that not only rectified the RF signal, but also with amplified characteristic to obtain a higher output voltage from a low input power. Driven by the increasing use of Internet of Things (IoT) devices operating in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band, the presented rectifier circuit in this paper is designed in the same band as well. Initially, the voltage doubler circuit is chosen as the primary rectifier circuit, afterward cascaded into several stages until the most optimized result is obtained. The optimization is investigated across -30 dBm to 0 dBm of RF input power by varying the value of capacitor and resistor at a single stage. Based on the topology analysis, Dickson topology yields slightly higher voltage compared to Villard. In turn, the optimized number of stages is 6 because higher stages resulted to less output power. The measured reflection coefficient of the fabricated prototype is better than 40 dB at the center frequency with 240 MHz bandwidth. The rectified voltage is 3.4 V with 0 dBm input power. When it is supplied by 5 dBm input power, the green LED that connected to rectifier circuit output is light-up, confirming the RF energy harvesting application.

References

C. Shekhar and S. Varma. 2018. An Optimized 2.4GHz RF Energy Harvester for Energizing Low-Power Wireless Sensor Platforms. J. Circuits, Syst. Comput. August: 1950104.

https://doi.org/10.1142/S0218126619501044.

Y. Huang, N. Shinohara, and H. Toromura. 2016. A Wideband Rectenna for 2.4 GHz-band RF Energy Harvesting. 2016 IEEE Wirel. Power Transf. Conf. WPTC 2016. 1-3.

P. Xu, S. Member, D. Flandre, S. Member, D. Bol, and S. Member. 2019. Energy Harvester for SWIPT IoT Smart Sensors. 54(10): 2717-2729.

https://doi.org/10.1109/JSSC.2019.2914581.

Bhatt, Kapil, Sandeep Kumar, Pramod Kumar, and Chandra Charu Tripathi. 2019. Highly Efficient 2.4 and 5.8 GHz Dual-band Rectenna for Energy Harvesting Applications. IEEE Antennas and Wireless Propagation Letters. 18(12): 2637-2641.

https://doi.org/10.1109/LAWP.2019.2946911.

Saffari, Parvaneh, Ali Basaligheh, and Kambiz Moez. 2-19. An RF-to-DC Rectifier with High Efficiency Over Wide Input Power Range for RF Energy Harvesting Applications. IEEE Transactions on Circuits and Systems I: Regular Papers. 66(12): 4862-4875.

https://doi.org/10.1109/TCSI.2019.2931485.

Almansouri, Abdullah S., Mahmoud H. Ouda, and Khaled N. Salama. 2018. A CMOS RF-to-DC Power Converter with 86% Efficiency and− 19.2-dBm Sensitivity. IEEE Transactions on Microwave Theory and Techniques. 66(5 (2): 2409-2415.

https://doi.org/10.1109/TMTT.2017.2785251.

G. Lin, M. Lee, and Y. Hsu. 2012. An AC-DC Rectifier for RF Energy Harvesting System. Proc. APMC 2012. 1052-1054.

https://doi.org/10.1109/APMC.2012.6421822.

I. Adam et al. 2015. An Efficient Triple Band Microwave Rectifier. 2015 IEEE International Circuits and Systems Symposium (ICSyS). 65-70.

https://doi.org/10.1109/CircuitsAndSystems.2015.7394066.

I. R. H. Yaldi, S. K. A. Rahim, and M. R. Ramli. 2016. Compact Rectifier Design for RF Energy Harvesting. IEEE Asia-Pasific Conference on Applied Electromagnetics. December: 11-13.

https://doi.org/10.1109/APACE.2016.7916437.

U. O. C. C. J. L. Volakis. 2012. Design of an Efficient Ambient WiFi Energy Harvesting System. IET Microwaves, Antennas Propag. Receiv. 6(May): 1200-1206.

https://doi.org/10.1049/iet-map.2012.0129.

Najeeb, Amena, Mohammed Arifuddin Sohel, and Qudsia Masood. 2019. Design of 8-Stage RF-to-DC Converter for Energy Harvesting Applications. International Conference on Computers and Devices for Communication. 421-426. Springer, Singapore,

https://doi.org/10.1007/978-981-15-8366-7_62.

Eroglu, Abdullah, Kowshik Dey, Rezwan Hussain, and Tunir Dey. 2019. Design of Dual Band Rectifiers for Energy Harvesting Applications. Applied Computational Electromagnetics Society Journal. 34(2).

Adam, Ismahayati, M. Najib M. Yasin, Hasliza A. Rahim, Ping J. Soh, and M. Fareq Abdulmalek. A Compact Dual‐band Rectenna for Ambient RF Energy Harvesting. Microwave and Optical Technology Letters. 60(11): 2740-2748.

https://doi.org/10.1002/mop.31475.

D. Wang and R. Negra. 2012. Design of a Rectifier for 2. 45 GHz Wireless Power Transmission. 2012 8th Conf. Ph.D Res. Microelectron. Electron. 187-190.

K. Niotaki, S. Kim, S. Jeon, A. Collado, A. Georgiadis, and M. M. Tentzeris. 2013. A Compact Dual-band Rectenna Using Slot-Loaded. IEEE Antennas Wirel. Propag. Lett. 12: 1634-1637.

https://doi.org/10.1109/LAWP.2013.2294200.

M. ur Rehman, W. Ahmad and W. T. Khan. 2017. Highly Efficient Dual Band 2.45/5.85 GHz Rectifier for RF Energy Harvesting Applications in ISM Band. 2017 IEEE Asia Pacific Microwave Conference (APMC). 150-153.

https://doi.org/10.1109/APMC.2017.8251400.

Nazari, M., J. Chen, A. M. Gole, Mi K. Hong, Pritiraj Mohanty, S. Erramilli, and O. Narayan. 2018. Phase Cascade Lattice Rectifier Array: An Exactly Solvable Nonlinear Network Circuit. New Journal of Physics. 20(10): 103007.

https://doi.org/10.1088/1367-2630/aae3fb.

Skyworks. 2015. Data Sheet @Bullet Sms7630-061 Schottky Diode. 1-7.

AVX. 2010. X7R Dielectric. Options, No. 544606. 14-82, [Online]. Available: http://www.jameco.com/Jameco/Products/ProdDS/740471-DS01.pdf.

Keysight Technologies. 2017. Harmonic Balance Simulator. Keysight Technologies. http://www.keysight.com/main/editorial.jspx?cc=MY&lc=eng&ckey=2061503&nid=-34333.804586&id=2061503.

Multicomp. 2012. Data Sheet LED, 5mm, AC, Yellow/Green MCL056YGW. 1-4.

Downloads

Published

2022-01-31

Issue

Section

Science and Engineering

How to Cite

DEVELOPMENT OF CASCADED VOLTAGE DOUBLER RECTIFIER FOR RF ENERGY HARVESTING. (2022). Jurnal Teknologi, 84(2), 153-161. https://doi.org/10.11113/jurnalteknologi.v84.17405