COMPUTATIONAL FLUID DYNAMICS MODEL OF THE VENTILATION AIR FLOW FOR A PROTECTIVE ENVIRONMENT ROOM

Authors

  • Mohd Hazzah Ahmad Siron HVAC&R Section, Universiti Kuala Lumpur, Malaysia France Institute, Bangi, 43600 Selangor, Malaysia
  • Md Amin Md Nor Automotive Engineering Section, Universiti Kuala Lumpur, Malaysia France Institute, Bangi, 43600 Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.17430

Keywords:

Protective environment room, computational fluid dynamics, validation, grid convergence index, turbulence equation

Abstract

The outbreak of infectious diseases in the healthcare environment has prompted the need to study the efficacy of patients' protection inside a protective environment (PE) room. The main objective of this study is to develop a computational fluid dynamics model for a PE room. The development involved the selection of a turbulence equation and an optimum finite volume size. Prior to selecting the optimum finite volume size, grid convergence test was carried out on the model. Subsequently, the model was validated with a set of experimental data for the selection of the right turbulence equation. The results revealed that the optimum element size is 0.06 m with the realizable k-epsilon turbulence equation as a suitable equation for the room's air flow. The resultant model has laid an important foundation for future simulation studies on the PE room in any healthcare setting.

References

Green, A. 2018. Ebola Outbreak in the DR Congo: Lessons Learned. Lancet. 391(10135): 2096. Doi: https://doi.org/10.1016/S0140-6736(18)31171-1.

Sarkar, A., A. Zlojutro, K. Khan, and L. Gardner. 2019. Measles Resurgence in the USA: How International Travel Compounds Vaccine Resistance. Lancet Infectious Diseases. 19(7): 684-686. Doi: https://doi.org/10.1016/s1473-3099(19)30231-2.

Montgomery, M. P., Robertson, S., Koski, L., et al. 2018. Multidrug-Resistant Campylobacter jejuni Outbreak Linked to Puppy Exposure — United States, 2016–2018. MMWR Morbidity and Mortality Weekly Report. 67(37): 1032-1035. Doi: http://dx.doi.org/10.15585/mmwr.mm6737a3.

Lee, B., and E. Rose. 2018. Other Potentially Life-Threatening Conditions with Mucocutaneous Findings (Leptospirosis, Typhoid Fever, Dengue, Diphtheria, Murine Typhus). Life-Threatening Rashes: An Illustrated, Practical Guide. 319-347. Doi: https://doi.org/10.1007/978-3-319-75623-3_23.

Lu, Y., S. Landreth, A. Gaba, M. Hlasny, G. Liu, Y. Huang, and Y. Zhou. 2019. In Vivo Characterization of Avian Influenza a (H5N1) and (H7N9) Viruses Isolated from Canadian Travelers. Viruses. 11(2): 193. Doi: https://doi.org/10.3390/v11020193.

Muralidar, S., S. V. Ambi, S. Sekaran, and U. M. Krishnan. 2020. The Emergence of COVID-19 as a Global Pandemic: Understanding the Epidemiology, Immune Response and Potential Therapeutic Targets of SARS-CoV-2. Biochimie. 179: 85-100.

Doi: https://dx.doi.org/10.1016%2Fj.biochi.2020.09.018.

Keni, R., A. Alexander, P. G. Nayak, J. Mudgal, and K. Nandakumar. 2020. COVID-19: Emergence, Spread, Possible Treatments, and Global Burden. Frontiers in Public Health. 8: 216. Doi: https://doi.org/10.3389/fpubh.2020.00216.

Liu, L., Y. Li, P. V. Nielsen, J. Wei, and R. L. Jensen. 2017. Short-Range Airborne Transmission of Expiratory Droplets Between Two People. Indoor Air. 27(2): 452-462. Doi: https://doi.org/10.1111/ina.12314.

Leong Bin Abdullah, M. F. I., H. Ahmad Yusof, N. Mohd Shariff, R. Hami, N. F. Nisman, and K. S. Law. 2021. Depression and Anxiety in the Malaysian Urban Population and Their Association with Demographic Characteristics, Quality of Life, and the Emergence of the COVID-19 Pandemic. Current Psychology. 1-12. Doi: https://doi.org/10.1007/s12144-021-01492-2.

Wang, C., M. Tee, A. E. Roy et al. 2021. The Impact of COVID-19 Pandemic on Physical and Mental Health of Asians: A Study of Seven Middle-Income Countries in Asia. PLOS ONE. 16(2): e0246824.

Doi: https://doi.org/10.1371/journal.pone.0246824.

Suleyman, G., G. Alangaden, and A. C. Bardossy. 2018. The Role of Environmental Contamination in the Transmission of Nosocomial Pathogens and Healthcare-Associated Infections. Current Infectious Disease Reports. 20(6): 12. Doi: https://doi.org/10.1007/s11908-018-0620-2.

Halain, A. A., K. L. Soh, A. Ibrahim, S. Japar, S. L. Ong, A. M. Sani, … K. G. Soh. 2018. Nursing Workload in Relation to Nosocomial Infection in Public Hospital Intensive Care Unit, Malaysia. Research Journal of Pharmacy and Technology. 11(9): 3892-3896. Doi: https://doi.org/10.5958/0974-360X.2018.00713.8.

Khaidi, N. A. K. M., S. M. Anua, N. Mazlan, and S. N. Saud. 2021. The Presence of Microbial Air Contaminants in the Operating Theatre at a Teaching Hospital in East Coast Malaysia. Open Biology Journal. 9(1): 11-16. Doi: http://dx.doi.org/10.2174/1874196702109010011.

Ai, Z. and A. K. Melikov. 2018. Airborne Spread of Expiratory Droplet Nuclei Between the Occupants of Indoor Environments: A Review. Indoor Air. 28(4): 500-524. Doi: https://doi.org/10.1111/ina.12465.

Phoon, H. Y. P. H. Hussin, B. M. Hussain, S. Y. Lim, J. J. Woon, Y. X. Er, and K. L. Thong .2018. Distribution, Genetic Diversity and Antimicrobial Resistance of Clinically Important Bacteria from the Environment of a Tertiary Hospital in Malaysia. Journal of Global Antimicrobial Resistance. 14(18): 132-140. Doi: https://doi.org/10.1016/j.jgar.2018.02.022.

Li, Y., and P. V. Nielsen. 2011. Commemorating 20 Years of Indoor Air: CFD and Ventilation Research. Indoor Air. 21(6): 442-453. Doi: http://dx.doi.org/10.1111/j.1600-0668.2011.00723.x.

Wang, H., and Z. (John) Zhai. 2016. Advances in Building Simulation and Computational Techniques: A Review between 1987 and 2014. Energy and Buildings. 128: 319-335. Doi: http://dx.doi.org/10.1016/j.enbuild.2016.06.080.

Nielsen, P. V. 2015. Fifty Years of CFD for Room Air Distribution. Building and Environment. 91: 78-90. Doi: https://doi.org/10.1016/j.buildenv.2015.02.035.

Gagge, A. P. and Y. Nishi. 2011. Heat Exchange Between Human Skin Surface and Thermal Environment. Comprehensive Physiology, Hoboken, NJ, USA: John Wiley & Sons. 69-92.

Xu, C., P. V. Nielsen, L. Liu, R. L. Jensen, and G. Gong. 2017. Human Exhalation Characterization with the Aid of Schlieren Imaging Technique. Building and Environment. 112: 190-199. Doi: https://doi.org/10.1016/j.buildenv.2016.11.032.

Melikov, A. and J. Kaczmarczyk. 2007. Measurement and Prediction of Indoor Air Quality Using a Breathing Thermal Manikin. Indoor Air. 17(1): 50-59. Doi: https://doi.org/10.1111/j.1600-0668.2006.00451.x.

Topp, C., P. Hesselholt, M. R. Trier, and P. V. Nielsen. 2003. Influence of Geometry of Thermal Manikins on Concentration Distribution and Personal Exposure. 2: 357-362.

Yan, Y., X. Li, and J. Tu. 2017. Effects of Manikin Model Simplification on CFD Predictions of Thermal Flow Field Around Human Bodies. Indoor and Built Environment. 26(9): 1185-1197. Doi: https://doi.org/10.1177%2F1420326X16653500

Mahyuddin, N., H. B. Awbi, and E. A. Essah. 2015. Computational Fluid Dynamics Modelling of the Air Movement in An Environmental Test Chamber with A Respiring Manikin. Journal of Building Performance Simulation. 8(5): 359-374.

Doi: https://doi.org/10.1080/19401493.2014.956672.

ASHRAE. 2013. ASHRAE Standard 170-2013, Ventilation of Health Care Facilities. 2013th ed. Atlanta, GA: ASHRAE.

Chen, Q., and J. Srebric. 2002. A Procedure for Verification, Validation, and Reporting of Indoor Environment CFD Analyses. HVAC&R Research. 8(2): 201-216.

Awbi, H. B. 2005. Ventilation of Buildings. 2nd ed. London & New York: Taylor & Francis Group.

Roache, P. J. 1997. Quantification of Uncertainty in Computational Fluid Dynamics. Annual Review of Fluid Mechanics. 29(1): 123-160.

Sørensen, D. N. and P. V. Nielsen. 2003. Quality Control of Computational Fluid Dynamics in Indoor Environments. Indoor Air. 13(1): 2-17. https://doi.org/10.1111/j.1600-0668.2003.00170.x.

Launder, B. E., and D. B. Spalding. 1972. Mathematical Models of Turbulence. London: Academic Press.

Rodi, W. 2000. Turbulence Models and Their Application in Hydraulics. 3rd ed. London and New York: Taylor & Francis.

Launder, B. E., and D. B. Spalding. 1974. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering. 3(2): 269-289. Doi: http://dx.doi.org/10.1016/0045-7825(74)90029-2.

Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale. 1992. Development of Turbulence Models for Shear Flows by A Double Expansion Technique. Physics of Fluids A: Fluid Dynamics. 4(7): 1510-1520.

Doi: https://doi.org/10.1063/1.858424.

Shih, T.-H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. A New k-ϵ eddy Viscosity Model for High Reynolds Number Turbulent Flows. Computers & Fluids. 24(3): 227-238. Doi: https://doi.org/10.1016/0045-7930(94)00032-T.

Zhang, Z., W. Zhang, Z. J. Zhai, and Q. Y. Chen. 2007. Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2—Comparison with Experimental Data from Literature. HVAC&R Research. 13(6): 871-886. Doi: https://doi.org/10.1080/10789669.2007.10391460.

Antoun, S., N. Ghaddar, and K. Ghali. 2016. Coaxial Personalized Ventilation System and Window Performance for Human Thermal Comfort in Asymmetrical Environment. Energy and Buildings. 111: 253-266.

Doi: http://dx.doi.org/10.1016/j.enbuild.2015.11.030.

Hussain, S., P. H. Oosthuizen, and A. Kalendar. 2012. Evaluation of Various Turbulence Models for the Prediction of the Airflow and Temperature Distributions in Atria. Energy and Buildings. 48: 18-28.

Doi: https://doi.org/10.1016/j.enbuild.2012.01.004.

Licina, D., A. Melikov, C. Sekhar, and K. W. Tham. 2015. Air Temperature Investigation in Microenvironment Around a Human Body. Building and Environment. 92: 39-47. Doi: https://doi.org/10.1016/j.buildenv.2015.04.014.

Mundt, E. 1995. Displacement Ventilation Systems—Convection Flows and Temperature Gradients. Building and Environment. 30(1): 129-133.

Doi: http://doi.org/10.1016/0360-1323(94)e0002-9.

Yang, C., X. Yang, and B. Zhao. 2015. The Ventilation Needed to Control Thermal Plume and Particle Dispersion from Manikins in A Unidirectional Ventilated Protective Isolation Room. Building Simulation. 8(5): 551-565.

Doi: https://doi.org/10.1007/s12273-014-0227-6.

Li, J., J. Liu, C. Wang, N. Jiang, and X. Cao. 2017. PIV Methods for Quantifying Human Thermal Plumes in A Cabin Environment Without Ventilation. Journal of Visualization. 20(3): 535-548. Doi: http://dx.doi.org/10.1007/s12650-016-0404-4.

Jiang N., S. Yao, L. Feng, H. Sun, and J. Liu. 2017. Experimental Study on Flow Behavior of Breathing Activity Produced by A Thermal Manikin. Building and Environment. 123: 200-210. Doi: https://doi.org/10.1016/j.buildenv.2017.07.004.

Chen, C., and B. Zhao. 2010. Some Questions on Dispersion of Human Exhaled Droplets in Ventilation Room: Answers from Numerical Investigation. Indoor Air. 20(2): 95-111.

Doi: https://doi.org/10.1111/j.1600-0668.2009.00626.x.

Downloads

Published

2023-11-30

Issue

Section

Science and Engineering

How to Cite

COMPUTATIONAL FLUID DYNAMICS MODEL OF THE VENTILATION AIR FLOW FOR A PROTECTIVE ENVIRONMENT ROOM. (2023). Jurnal Teknologi, 86(1), 195-202. https://doi.org/10.11113/jurnalteknologi.v86.17430