• Wei Li Tan Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University, Sarawak Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
  • Yeong Huei Lee Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University, Sarawak Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
  • Cher Siang Tan School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Yee Yong Lee Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Ahmad Beng Hong Kueh Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia



Lightweight aggregate concrete, expanded clay, oil palm shell, hardened property, fresh property, reinforced concrete design


In order to reduce the continual depletion and exploitation of natural resources, this paper examines the mechanical properties and fracture prediction of sustainable lightweight aggregates concretes comprising agro-industrial waste or/and artificial aggregate, considering a full replacement of conventional coarse aggregate. The fresh and hardened properties are examined, from which three out of the five design mixes can achieve structural concrete specifications. It is observed that compression, tensile, and flexural strengths of the mixes exhibit a similar behaviour trend, as relatively higher values can be obtained from homogenous coarse aggregates compared to heterogeneous aggregates for different proportions of oil palm shell (OPS) and expanded clay replacement. The experimental results showed compression strength of 13 to 32 MPa, splitting tensile strength of 1.32 to 2.97 MPa and flexural strength of 1.67 to 5.24 MPa for the investigated mixes at concrete age of 28 day. Most of the mixes able to achieve structural use. Amongst the mixes, those containing expanded clay lowered the corresponding sorptivity values. Although statistics prove that the prediction models of tensile and flexural strengths can represent existing experimental findings, further investigations are recommended for a better properties forecasting of lightweight aggregate concrete containing OPS and expanded clay.


Ahmad, M. R., and B. Chen. 2019. Experimental Research on the Performance of Lightweight Concrete Containing Foam and Expanded Clay Aggregate. Compos. Part B Eng. 171: 46-60.

DOI: 10.1016/j.compositesb.2019.04.025.

ACI Committee 213. 2003. ACI 213R-03: Guide for Structural Lightweight Aggregate Concrete.

DOI: 10.1016/0262-5075(79)90004-6.

Amran, M. et al. 2020. Fibre-Reinforced Foamed Concretes: A Review. Materials (Basel). 13(19).

DOI: 10.3390/ma13194323.

Amran, M. et al. 2020. Design Efficiency, Characteristics, and Utilization of Reinforced Foamed Concrete: A Review. Crystals. 10(10).

DOI: 10.3390/cryst10100948.

Orouji, M., Zahrai, S. M. and Najaf, E. 2021. Effect of Glass Powder & Polypropylene Fibers on Compressive and Flexural Strengths, Toughness and Ductility of Concrete: An Environmental Approach. Structures. 33: 4616-4628.

Zahrai, S. M., Mortezagholi, M. H. and Naraj, E. 2016. Using AP2RC & P1RB Micro-silica Gels to Improve Concrete Strength and Study of Resulting Contamination. Advances in Concrete Construction. 4(3):195-206.

Lee, Y. H., Chua, N., Amran, M., Lee, Y. Y., Kueh, A. B. H., Fediuk, R., Vatin, N., Vasilev, Y. 2021. Thermal Performance of Structural Lightweight Concrete Composites for Potential Energy Saving. Crystals. 11(5): 416.

Amran, M., Lee, Y. H., Fediuk, R., Murali, G., Mosaberpanah, M. A., Ozbakkaloglu, T., Lee, Y. Y., Vatin, N., Klyuev, S., Karelia, M. 2021. Palm Oil Fuel Ash-based Eco-friendly Concrete Composite: A Critical Review of the Long-term Properties. Materials. 14(22): 7074.

Matar, P. and Assaad, J. J. 2019. Concurrent Effects of Recycled Aggregates and Polypropylene Fibers on Workability and Key Strength Properties of Self-consolidating Concrete. Construction and Building Materials. 199: 492-500.

Jhatial, A. A., W. I. Goh, N. Mohamad, L. W. Hong, and M. T. Lakhiar. 2018. The Mechanical Properties of Foamed Concrete With Polypropylene Fibres the Mechanical Properties of Foamed Concrete With Polypropylene Fibres. Int. J. Eng. Technol. 7(3.7): 411-413.

DOI: 10.14419/ijet.v7i3.7.18892.

Teo, D. C. L., M. A. Mannan, V. J. Kurian, and C. Ganapathy. 2007. Lightweight Concrete Made from Oil Palm Shell (OPS): Structural Bond and Durability Properties. Build. Environ. 42(7): 2614-2621.

DOI: 10.1016/j.buildenv.2006.06.013.

Zhou, H., and A. L. Brooks. 2019. Thermal and Mechanical Properties of Structural Lightweight Concrete Containing Lightweight Aggregates and Fly-Ash Cenospheres. Constr. Build. Mater. 198: 512-526.

DOI: 10.1016/j.conbuildmat.2018.11.074.

ASTM C330. 2017. ASTM C330-17a. Standard Specification for Lightweight Aggregates for Structural Concrete. Annu. B. ASTM Stand.

Ashok, K., and T. Manoj. 2019. Study on Strength Properties of Lightweight Expanded Clay Aggregate Concrete. i-manager’s J. Struct. Eng. 7(4): 7-14.

DOI: 10.26634/jste.7.4.15473.

Sonia, T., R. Subashini, and R. Banupriya. 2016. Experimental Investigation on Mechanical Properties of Light Weight Concrete Using Leca. Int. J. Sci. Res. 5(11): 1511-1514.

Mo, K. H., U. J. Alengaram, M. Z. Jumaat, M. Y. J. Liu, and J. Lim. 2016. Assessing Some Durability Properties of Sustainable Lightweight Oil Palm Shell Concrete Incorporating Slag and Manufactured Sand. J. Clean. Prod. 112: 763-770

DOI: 10.1016/j.jclepro.2015.06.122.

Islam, M. M. U., K. H. Mo, U. J. Alengaram, and M. Z. Jumaat. 2016. Mechanical and Fresh Properties of Sustainable Oil Palm Shell Lightweight Concrete Incorporating Palm Oil Fuel Ash. J. Clean. Prod. 115: 307-314.

DOI: 10.1016/j.jclepro.2015.12.051.

Shafigh, P., M. Z. Jumaat, and H. Mahmud. 2011. Oil Palm Shell as a Lightweight Aggregate for Production High Strength Lightweight Concrete. Constr. Build. Mater. 25(4): 1848-1853.

DOI: 10.1016/j.conbuildmat.2010.11.075.

Mo, K. H., U. J. Alengaram, and M. Z. Jumaat. 2014. A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members. Advances in Materials Science and Engineering. 2014: 1-9.

DOI: 10.1155/2014/365197.

EN 197-1. 2011. Composition, Specifications and Conformity Criteria for Common Cements. European Standard.

ASTM C150/C150M-17. 2019. Standard Specification for Portland Cement.

Muhammad Nazrin Akmal, A. Z., K. Muthusamy, F. Mat Yahaya, H. Mohd Hanafi, and Z. Nur Azzimah. 2017. Utilization of Fly Ash as Partial Sand Replacement in Oil Palm Shell Lightweight Aggregate Concrete. IOP Conf. Series: Materials Science and Engineering. 271.

DOI: 10.1088/1757-899X/271/1/012003.

Rahal, K. 2007. Mechanical Properties of Concrete with Recycled Coarse Aggregate. Building and Environment. 42: 407-415.

Salem, N., Ltifi, M., Hessis, H. 2011. Study of Mechanical Behavior of Lightweight Aggregates Concrete of Tunisian Clay. Procedia Engineering. 10: 936-41.

Arioz, O., K. Kilinc, B. Karasu, G. Kaya, G. Arslan, M. Tuncan, A. Tuncan, M. KORKUT and S. Kivrak. 2008. A Preliminary Research on the Properties of Lightweight Expanded Clay Aggregate. J. Aust. Ceram. Soc. 44(1): 23-30

Lim, S. K., C. S. Tan, K. P. Chen, M. L. Lee, and W. P. Lee. 2013. Effect of Different Sand Grading on Strength Properties of Cement Grout. Constr. Build. Mater. 38: 348-355.

DOI: 10.1016/j.conbuildmat.2012.08.030.

Tangchirapat, W., and C. Jaturapitakkul. 2010. Strength, Drying Shrinkage, and Water Permeability of Concrete Incorporating Ground Palm Oil Fuel Ash. Cem. Concr. Compos. 32(10): 767-774.

DOI: 10.1016/j.cemconcomp.2010.08.008.

Shafigh, P., S. Salleh, H. Ghafari, and H. Bin Mahmud. 2018. Oil Palm Shell as an Agricultural Solid Waste in Artificial Lightweight Aggregate Concrete. Eur. J. Environ. Civ. Eng. 22(2): 165-180.

DOI: 10.1080/19648189.2016.1182084.

Teo, D. C. L., M. A. Mannan, and V. J. Kurian. 2010. Durability of Lightweight OPS Concrete Under Different Curing Conditions. Mater. Struct. Constr. 43(1): 1-13.

DOI: 10.1617/s11527-008-9466-7.

Palanisamy, M. et al. 2020. Permeability Properties of Lightweight Self-Consolidating Concrete Made With Coconut Shell Aggregate. J. Mater. Res. Technol. 9(3): 3547-3557.

DOI: 10.1016/j.jmrt.2020.01.092.

Haque, M. N., H. Al-Khaiat, and O. Kayali. 2004. Strength and Durability of Lightweight Concrete. Cem. Concr. Compos. 26(4): 307-314.

DOI: 10.1016/S0958-9465(02)00141-5.

Shafigh, P., H. Bin Mahmud, and M. Z. Jumaat. 2012. Oil Palm Shell Lightweight Concrete as a Ductile Material. Mater. Des. 36: 650-654.

DOI: 10.1016/j.matdes.2011.12.003.

Alengaram, U. J., H. Mahmud, and M. Z. Jumaat. 2011. Enhancement and Prediction of Modulus of Elasticity of Palm Kernel Shell Concrete. Mater. Des. 32: 2143-2148.

DOI: 10.1016/j.matdes.2010.11.035.

Moravia, W. G., A. G. Gumieri, and W. L. Vasconcelos. 2010. Efficiency Factor and Modulus of Elasticity of Lightweight Concrete with Expanded Clay Aggregate. Rev. IBRACON Estruturas e Mater. 3(2): 195-204.

DOI: 10.1590/s1983-41952010000200005.

Maghfouri, M., P. Shafigh, and M. Aslam. 2018. Optimum Oil Palm Shell Content as Coarse Aggregate in Concrete Based on Mechanical and Durability Properties. Adv. Mater. Sci. Eng. 2018: 1-14.

DOI: 10.1155/2018/4271497.

Gao, X. F., Y. T. Lo, and C. M. Tam. 2002. Investigation of Micro-Cracks and Microstructure of High Performance Lightweight Aggregate Concrete. Build. Environ. 37(5): 485-489.

DOI: 10.1016/S0360-1323(01)00051-8.

Vijayalakshmi, R., and S. Ramanagopal. 2018. Structural Concrete Using Expanded Clay Aggregate: A Review. Indian J. Sci. Technol. 11(16): 1-12.

DOI: 10.17485/ijst/2018/v11i16/121888.

Ji, T., D. D. Zheng, X. F. Chen, X. J. Lin, and H. C. Wu. 2015. Effect of Prewetting Degree of Ceramsite on the Early-Age Autogenous Shrinkage of Lightweight Aggregate Concrete. Constr. Build. Mater. 98: 102-111.

DOI: 10.1016/j.conbuildmat.2015.08.102.

Shen, D., J. Jiang, J. Shen, P. Yao, and G. Jiang. 2015. Influence of Prewetted Lightweight Aggregates on the Behavior and Cracking Potential of Internally Cured Concrete at an Early Age. Constr. Build. Mater. 99: 260-271.

DOI: 10.1016/j.conbuildmat.2015.08.093.

Oluokun, F. A. 1991. Prediction of Concrete Tensile Strength From Its Compressive Strength. Evaluation of Existing Relations for Normal Weight Concrete. ACI Mater. J. 88(3): 302-309.

DOI: 10.14359/1942.

CEB-FIP MODEL CODE 1990. 1993.

DOI: 10.1680/ceb-fipmc1990.35430.

Amran, Y. H. M., N. Farzadnia, and A. A. A. Ali. 2015. Properties and Applications of Foamed Concrete; A Review. Construction and Building Materials. 101: 990-1005.

DOI: 10.1016/j.conbuildmat.2015.10.112.

Lo, T. Y., H. Z. Cui, and Z. G. Li. 2004. Influence of Aggregate Pre-Wetting and Fly Ash on Mechanical Properties of Lightweight Concrete. Waste Manag. 24(4): 333-338.

DOI: 10.1016/j.wasman.2003.06.003.

Shetty, M. S. 2011.Concrete Technology: Theory and Practice. New Delhi: Chand and Company Ltd.

Zhang, M. H., and O. E. Gjorv. 1991. Mechanical Properties of High-Strength Lightweight Concrete. ACI Mater. J. 88(3): 240-247.

DOI: 10.14359/1839.

Sarkar, S. L., C. Satish, and B. Leif. 1992. Interdependence of Microstructure and Strength of Structural Lightweight Aggregate Concrete. Cem. Concr. Compos. 14: 239-248.

DOI: 10.1016/0958-9465(92)90022-N.

Husem, M. 2003. The Effects of Bond Strengths Between Lightweight and Ordinary Aggregate-Mortar, Aggregate-Cement Paste on the Mechanical Properties of Concrete. Mater. Sci. Eng. A. 363(1-2): 152-158.

DOI: 10.1016/S0921-5093(03)00595-1.

Lo, T. Y. and H. Z. Cui. 2004. Effect of Porous Lightweight Aggregate on Strength of Concrete. Mater. Lett. 58(6): 916-919.

DOI: 10.1016/j.matlet.2003.07.036.

Poh-Yap, S., U. Johnson-Alengaram, K. Hung-Mo, and M. Zamin-Jumaat. 2017. High Strength Oil Palm Shell Concrete Beams Reinforced with Steel Fibres. Mater. Constr. 67(328).

DOI: 10.3989/mc.2017.11616.

Wang, H., and A. Belarbi. 2011. Ductility Characteristics of Fiber-Reinforced-concrete Beams Reinforced with FRP Rebars. Constr. Build. Mater. 25(5): 2391-2401.

DOI: 10.1016/j.conbuildmat.2010.11.040.

Fernández-Cánovas, M., M. N. González-García, J. Á. Piñero, and A. Cobo. 2016. Compressive Strength Behaviour of Low- and Medium-Strength Concrete Specimens Confined with Carbon Fibres in Defective Implementation Conditions: An Experimental Study. Mater. Constr. 66(324).

DOI: 10.3989/mc.2016.08315.

J. A. and M. S. D. Kumar, D. Praveen, A. S. A. Prawin, and A. M. Uzair. 2018. Flexural Behavior of Lightweight Expanded Clay Aggregate Concrete Beam Reinforced with Geogrid. Vel Tech Eng. Coll. 118(20): 3537-3545.

Shafigh, P., M. Hassanpour. M., S. V. Razavi, and M. Kobraei. 2011. An Investigation of the Flexural Behaviour of Reinforced Lightweight Concrete Beams. Int. J. Phys. Sci. 6(10): 2414-2421.

DOI: 10.5897/IJPS10.550.

Alengaram, U. J., M. Z. Jumaat, and H. Mahmud. 2008. Ductility Behaviour of Reinforced Palm Kernel Shell Concrete Beams. Eur. J. Sci. Res. 23(3): 406-420.

Teo, D. C. L., M. A. Mannan, and J. V. Kurian. 2006. Flexural Behaviour of Reinforced Lightweight Concrete Beams Made With Oil Palm Shell (OPS). J. Adv. Concr. Technol. 4(3): 459-468.

DOI: 10.3151/jact.4.459.

Ahmed, E., and H. R. Sobuz. 2011. Flexural and Time-Dependent Performance of Palm Shell Aggregate Concrete Beam. KSCE J. Civ. Eng. 15(5): 859-865.

DOI: 10.1007/s12205-011-1148-2.

British Standards Institution. 1997. Structural use of concrete BS8110-1:1997. BSI.

DOI: 10.1001/jamaoncol.2016.2547.

BS EN 1992-1-1. 2004. Eurocode 2: Design of Concrete Structures - Part 1-1 : General Rules and Rules for Buildings. Br. Stand. Inst.

DOI: [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC].

ACI Committee 318. 2014. Building Code Requirements for Structural Concrete.




How to Cite




Science and Engineering