COST-EFFECTIVE ENERGY MANAGEMENT SYSTEMS STRATEGY IN OPTIMIZATION OF PHOTOVOLTAIC FOR GRID-CONNECTED SYSTEM

Authors

  • Noor Ilham Shamsuddin School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia
  • Madihah Md Rasid School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia https://orcid.org/0000-0002-1947-1174
  • Mohd Shafiq Anuar PLUS Berhad (S5&S6), KM25 Lebuhraya Perling, 81200, Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-0179-3714

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.17688

Keywords:

Renewable energy, PV generation, energy management system, optimization, energy storage system

Abstract

Renewable Energy Source (RES) based Distributed Generation (DG) like Photovoltaic (PV) is widely integrated into the distribution network, particularly for residential. With proper planning, the installation of optimal PV in the network is capable of minimizing the dependency on the power grid generation. However, the optimum use of solar energy has been limited by the weather and the load variation. At the particular time, the generated PV output is not fully utilized during the minimum load. The excessive generation of PV power occurs and causes an increase in the cost of electricity consumption. Therefore, the purpose of this paper is to optimize the PV size for the grid-connected system considering the Battery Energy Storage System (BESS) and the proper Energy Management System (EMS) Strategy in order to reduce the grid power consumption. BESS is introduced to store the excess PV power generated during peak hours, while the cost-effective EMS strategy is proposed to ensure the RES is fully employed. The number of PV panels is optimized using Particle Swarm Optimization (PSO) technique. The implementation of PSO in optimising PV size can reduce the number of PV panels by 21% compared to the conventional method.

References

S. C. B. S. Goud, B. Loveswara Rao, B. N. Reddy, N. Rajesh, B. Anjan, and C. R. Reddy. 2020. Optimization Techniques in PV-Wind based Distribution Generation- A Brief Review. 2020 IEEE 17th India Counc. Int. Conf. INDICON 2020. 1-6.

DOI: http://dx.doi.org10.1109/INDICON49873.2020.9342518

N. Boutana, A. Mellit, V. Lughi, and A. Massi Pavan. 2017. Assessment of Implicit and Explicit Models for Different Photovoltaic Modules Technologies. Energy. 122: 128-143.

DOI: http://dx.doi.org/10.1016/j.energy.2017.01.073.

Energy Commission. 2019. Guidelines for Solar Photovoltaic Installation on Net Energy Metering Scheme. [Electricity Supply Act (Amendment) 2015 (actA15010)] RegistrationNo: GP/ST/No.4/2016(Pin. 2019).

G. W. Chang and N. C. Chinh. 2020. Optimal Planning of PV-DG Units in a Distribution System by Biogeography-based Optimization. 2020 IEEE Reg. 10 Symp. TENSYMP 2020. 9: 1519-1522.

DOI: 10.1109/TENSYMP50017.2020.9230989.

M. M. M. A. Zalata, I. Robandi, and D. C. Riawan. 2020. Application of Firefly Algorithm Optimization in Distribution Generation Locating and Sizing using Renewable Energy for a Real Case Study in Halhul City of Palestine. 2018 2nd Borneo International Conference on Applied Mathematics and Engineering (BICAME). 228-232.

DOI: 10.1109/BICAME45512.2018.1570509062.

T. Prasetyo, Sarjiya, and L. M. Putranto. 2019. Optimal Sizing and Siting of PV-based Distributed Generation for Losses Minimization of Distribution using Flower Pollination Algorithm. 2019 Int. Conf. Inf. Commun. Technol. ICOIACT 2019. 779-783.

DOI: 10.1109/ICOIACT46704.2019.8938424.

M. Galih and S. Wicaksana. 2020. Optimal Placement and Sizing of PV as DG for Losses Minimization Using PSO Algorithm : A Case in Purworejo Area. 2020 International Conference on Sustainable Energy Engineering and Application (ICSEEA).

DOI: 10.1109/ICSEEA50711.2020.9306134.

U. B. Tayab, F. Yang, M. El-Hendawi, and J. Lu. 2019. Energy Management System for a Grid-connected Microgrid with Photovoltaic and Battery Energy Storage System. ANZCC 2018 - 2018 Aust. New Zeal. Control Conf. 141-144.

DOI: http://dx.doi.org/10.1109/ANZCC.2018.8606557.

J. Li. 2019. Optimal Sizing of Grid-connected Photovoltaic Battery Systems for Residential Houses in Australia. Renew. Energy. 136: 1245-1254.

DOI: http://dx.doi.org/10.1016/j.renene.2018.09.099.

F. Hafiz, M. A. Awal, A. R. De Queiroz, and I. Husain. 2020. Real-Time Stochastic Optimization of Energy Storage Management using Deep Learning-Based Forecasts for Residential PV Applications. IEEE Trans. Ind. Appl. 56(3): 2216-2226.

DOI: http://dx.doi.org/10.1109/TIA.2020.2968534.

P. Saini and L. Gidwani. 2020. Optimum Utilization of Photovoltaic Generation with Battery Storage in Distribution System by Utilizing Genetic Algorithm. 9th IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 2020. 0-5.

DOI: http://dx.doi.org/10.1109/PEDES49360.2020.9379881.

N. M. Nor, A. Ali, T. Ibrahim, and M. F. Romlie. 2017. Battery Storage for the Utility-Scale Distributed Photovoltaic Generations. IEEE Access. 6: 1137-1154.

DOI: http://dx.doi.org/10.1109/ACCESS.2017.2778004.

B. Wang, M. Zarghami, and M. Vaziri. 2016. Energy Management and Peak-shaving in Grid-connected Photovoltaic Systems Integrated with Battery Storage. NAPS 2016 - 48th North Am. Power Symp. Proc.

DOI: http://dx.doi.org/10.1109/NAPS.2016.7747844.

M. A. Tolba, V. N. Tulsky, and A. A. Z. Diab. 2017. Optimal Sitting and Sizing of Renewable Distributed Generations in Distribution Networks using a Hybrid PSOGSA Optimization Algorithm. Conf. Proc. - 2017 17th IEEE Int. Conf. Environ. Electr. Eng. 2017 1st IEEE Ind. Commer. Power Syst. Eur. EEEIC / I CPS Eur. 2017.

DOI: http://dx.doi.org/10.1109/EEEIC.2017.7977441.

A. Sassi, N. Zaidi, O. Nasri, and J. Ben Hadj Slama. 2017. Energy Management of PV/wind/battery Hybrid Energy System based on Batteries Utilization Optimization. Int. Conf. Green Energy Convers. Syst. GECS 2017.

DOI: http://dx.doi.org/10.1109/GECS.2017.8066133.

S. A. Pourmousavi, M. H. Nehrir, C. M. Colson, and C. Wang. 2010. Real-time Energy Management of a Stand-alone Hybrid Wind-microturbine Energy System using Particle Swarm Optimization. IEEE Trans. Sustain. Energy. 1(3): 193-20.

DOI: http://dx.doi.org/10.1109/TSTE.2010.2061881.

L. Pellegrino. 2019. A Reliable Energy Storage System Model for the Energy Community Management. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe).

DOI: http://dx.doi.org/ 10.1109/EEEIC.2019.8783906.

A. Aguilera Gonzalez, M. Bottarini, I. Vechiu, L. Gautier, L. Ollivier, and L. Larre. 2019. Model Predictive Control for the Energy Management of A Hybrid PV/Battery/Fuel Cell Power Plant. SEST 2019 - 2nd Int. Conf. Smart Energy Syst. Technol. 6-11.

DOI: http://dx.doi.org/10.1109/SEST.2019.8849051.

P. García, J. P. Torreglosa, L. M. Fernández, F. Jurado, R. Langella, and A. Testa. 2016. Energy Management System based on Techno-economic Optimization for Microgrids. Electr. Power Syst. Res. 131: 49-59.

DOI: http://dx.doi.org/10.1016/j.epsr.2015.09.017.

M. Elsied, A. Oukaour, H. Gualous, and R. Hassan. 2015. Energy Management and Optimization in Microgrid System based on Green Energy. Energy. 84: 139-151.

DOI: http://dx.doi.org/10.1016/j.energy.2015.02.108.

S. S. Choi and S. Min. 2017. Optimal Scheduling and Operation of the ESS for Prosumer Market Environment in Grid-Connected Industrial Complex. 2017 IEEE Industry Application Society Annual Meeting. 1-7.

DOI: http://dx.doi.org/10.1109/IAS.2017.8101727.

S. Gangatharan and M. Rengasamy. 2020. A Novel Battery Supported Energy Management System for the Effective Handling of Feeble Power in Hybrid Microgrid Environment. 2020 IEEE Access. 8: 217391-217415.

DOI: http://dx.doi.org/10.1109/ACCESS.2020.3039403.

S. Zhang and Y. Tang. 2019. Optimal Schedule of Grid-connected Residential PV Generation Systems with Battery Storages under Time-of-use and Step Tariffs. J. Energy Storage. 23(January): 175-182.

DOI: http://dx.doi.org/10.1016/j.est.2019.01.030.

T. A. Jumani, M. W. Mustafa, A. S. Alghamdi, M. M. Rasid, A. Alamgir, and A. B. Awan. 2020. Swarm Intelligence-Based Optimization Techniques for Dynamic Response and Power Quality Enhancement of AC Microgrids: A Comprehensive Review. IEEE Access. 8: 75986-76001.

DOI: http://dx.doi.org/10.1109/ ACCESS.2020.2989133.

D. Srinivas, K. Ramesh, and V. Ganesh. 2019. Optimal Design and Energy Management for Hybrid Wind-Solar PV based Renewable Energy System with Battery Storage: A Review. 8th Int. Conf. Comput. Power, Energy, Inf. Commun. ICCPEIC 2019. 155-160.

DOI:http://dx.doi.org/10.1109/ICCPEIC45300.2019.9082356

M. C. Argyrou and C. C. Marouchos. 2019. Energy Management and Modeling of a Grid-connected BIPV System with Battery Energy Storage. 2019 54th Int. Univ. Power Eng. Conf. 1-6.

DOI: http://dx.doi.org/ 10.1109/UPEC.2019.8893495.

R. Arora. 2020. PSO Optimized PID Controller Design for Performance Enhancement of Hybrid Renewable Energy System. IEEE 9th Power India International Conference (PIICON).

DOI: http://dx.doi.org/10.1109/PIICON49524.2020.9113046.

S. Kengam. 2019. An Efficient Energy Management System For Hybrid Renewable Energy Sources School of Electrical Engineering. Innovations in Power and Advanced Computing Technologies (i-PACT). 1-6.

DOI: http://dx.doi.org/10.1109/i-PACT44901.2019.8960201.

R. Islam and H. H. Lu. 2019. A Comparison of Performance of GA, PSO and Differential Evolution Algorithms for Dynamic Phase Reconfiguration Technology of a Smart Grid. IEEE Congress on Evolutionary Computation (CEC). 858-865.

DOI: http://dx.doi.org/10.11113/jt.v79.9987.

M. Gupta. 2019. Performance Enhancement of a Grid-Connected Micro Grid System using PSO Optimisation Technique. International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). 110-115.

DOI: http://dx.doi.org/10.1109/ICCCIS48478.2019.8974480.

Downloads

Published

2022-12-02

Issue

Section

Science and Engineering

How to Cite

COST-EFFECTIVE ENERGY MANAGEMENT SYSTEMS STRATEGY IN OPTIMIZATION OF PHOTOVOLTAIC FOR GRID-CONNECTED SYSTEM . (2022). Jurnal Teknologi (Sciences & Engineering), 85(1), 115-124. https://doi.org/10.11113/jurnalteknologi.v85.17688