SIMULATION ON RED BLOOD CELL’S SEPARATION IN MICROCHANNEL BY USING COMSOL© MULTIPHYSICS

Authors

  • Nur Tantiyani Ali Othman Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi UKM, Selangor, Malaysia https://orcid.org/0000-0002-3647-772X
  • Halimunnisha Sahul Hameed Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi UKM, Selangor, Malaysia https://orcid.org/0000-0001-9686-7247
  • Masli Irwan Rosli Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi UKM, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17708

Keywords:

Plasma, microchannel, separation, dielectrophoresis, COMSOL©

Abstract

Plasma cell neoplasm disease was caused by the production of large amount of plasma cells which it is unnecessary for the body as it will accumulate in the bone marrow and cause blood thicken and damage the kidneys. Thus, there are several techniques that have been developed for the separation of plasma in blood e.g., viscosity-based sedimentation, size-based filtration, and complete blood count test. Yet, these techniques have some drawbacks such as blood cells easily damaged and do not meet the Point-of-Care (POCT) test features. Hence, in this study, an active separation technique; dielectrophoresis (DEP) force was applied in the X-shaped microchannel which was developed by using AutoCAD© software as it is easily to fabricate at a low cost, while resulting in a high rate of the separation efficiency. The flow profile of a blood distribution and movement along a microchannel was observed by COMSOL© Multiphysics software version 5.5 at various process conditions: blood inlet velocities; VIB=80-200 µm/s, concentration of blood cells; CIB=0.01-0.05 mol/dm3 and electrode voltages; E=-20-20V. It shows that as the inlet velocity is increases, the separation efficiency is increasing. While, as the concentration and electric field intensity is increases, the separation efficiency is decreases due to low DEP force. It shows 100% separation efficiency was obtained for plasma separation at VIB=120 µm/s, CIB= 0.01 mol/dm3, and E=±10V which resulted FDEP=-1.23×1014 N/m. This DEP separation technique can be applied to improve the efficiency of plasma separation process from blood cells and simultaneously increase the accuracy of the diagnostic.

References

Avsievich, T., Zhu, R., Popov, A., Bykov, A. and Meglinski, I. 2020. The Advancement of Blood Cell Research by Optical Tweezers. Reviews in Physics. 100043.

DOI: http://dx.doi.org/10.1016/j.revip.2020.100043.

Huang, C. Te, Li, P. N., Pai, C. Y., Leu, T. S. and Jen, C. P. 2010. Design and Simulation of a Microfluidic Blood-Plasma Separation Chip Using Microchannel Structures. Separation Science and Technology. 45(1): 42-49.

DOI: http://dx.doi.org/10.1080/01496390903402125.

Stein, E. A. and Pum, J. 2004. Blood and Plasma. Encyclopedia of Analytical Science. Second Edition. 2: 294-300.

DOI: http://dx.doi.org/10.1016/B0-12-369397-7/00047-9.

Feher, J. 2012. Plasma and Red Blood Cells. Quantitative Human Physiology. 428-436.

DOI : http://dx.doi.org/10.1016/b978-0-12-382163-8.00045-1.

Marieb, E. N. and Hoehn, K. 2012. Overview: Blood Composition and Functions. Human Anatomy & Physiology. 634-657. Retrieved from http://www.phschool.com/atschool/florida/pdfbooks/sci_Marieb/pdf/Marieb_ch17.pdf.

Luczak, M., Formanowicz, D., Pawliczak, E., Wanic-Kossowska, M., Wykretowicz, A. and Figlerowicz, M. 2011. Chronic Kidney Disease-Related Atherosclerosis - Proteomic Studies of Blood Plasma. Proteome Science. 9: 1-12.

DOI: http://dx.doi.org/10.1186/1477-5956-9-25.

Hainaut, P. 2000. Detection of Circulating Tumour DNA in the Blood of Cancer Patients. Medecine/Sciences. 16(3): 446.

DOI: http://dx.doi.org/10.4267/10608/1670.

Carmona, P., Molina, M., Calero, M., Bermejo-Pareja, F., Martínez-Martín, P. and Toledano, A. 2013. Discrimination Analysis of Blood Plasma Associated with Alzheimer’s Disease Using Vibrational Spectroscopy. Journal of Alzheimer’s Disease. 34(4): 911-920.

DOI: http://dx.doi.org/10.3233/JAD-122041.

Bhuvanendran Nair Gourikutty, S., Chang, C. P. and Puiu, P. D. 2016. Microfluidic Immunomagnetic Cell Separation from Whole Blood. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 1011: 77-88.

DOI: http://dx.doi.org/10.1016/j.jchromb.2015.12.016.

Nakashima, Y., Hata, S., Yasuda, T., Mohamed Zackria, M. Z. A., Tirth, V., Yousuff, C. M., Shukla, N. K., et al. 2020. Blood Plasma Separation and Extraction from a Minute Amount of Blood Using Dielectrophoretic and Capillary Forces. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 42(4): 561-569.

DOI: 10.1109/SENSORSNANO44414.2019.8940041.

Basu, D. and Kulkarni, R. 2014. Overview of Blood Components and Their Preparation. Indian Journal of Anaesthesia. 58(5): 529-537.

DOI: http://dx.doi.org/10.4103/0019-5049.144647.

Maria, M. S., Chandra, T. S. and Sen, A. K. 2017. Capillary Flow-Driven Blood Plasma Separation and On-Chip Analyte Detection in Microfluidic Devices. Microfluidics and Nanofluidics. 21(4): 1-21.

DOI: http://dx.doi.org/10.1007/s10404-017-1907-6.

Rhoades, T., Kothapalli, C. R. and Fodor, P. S. 2020. Mixing Optimization in Grooved Serpentine Microchannels. Micromachines. 11(1): 1-12.

DOI: http://dx.doi.org/10.3390/mi11010061.

Zhang, J., Wei, X., Xue, X. and Jiang, Z. 2014. Structural Design of Microfluidic Channels for Blood Plasma Separation. Journal of Nanoscience and Nanotechnology. 14(10): 7419-7426.

DOI: http://dx.doi.org/10.1166/jnn.2014.9559.

Dauson, E., Gregory, K., Oppenheim, I. and Dahl, K. 2017. Human Blood Cell Separation Using Bulk Acoustic Waves in a Machined PMMA Microchannel. IEEE International Ultrasonics Symposium. IUS 0-3.

DOI: http://dx.doi.org/10.1109/ULTSYM.2017.8092782

Kuan, D. H., Wu, C. C., Su, W. Y. and Huang, N. T. 2018. A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On-Chip White Blood Cell Trapping. Scientific Reports. 8(1): 1-9.

DOI: http://dx.doi.org/10.1038/s41598-018-33738-8.

Li, D., Chen, H., Ren, S., Zhang, Y., Yang, Y. and Chang, H. 2020. Portable Liquid Chromatography for Point-Of-Care Testing of Glycated Hemoglobin. Sensors and Actuators, B: Chemical. 305(September 2019): 127484.

DOI: http://dx.doi.org/ 10.1016/j.snb.2019.127484.

Mohamed Zackria, M. Z. A., Tirth, V., Yousuff, C. M., Shukla, N. K., Islam, S., Irshad, K. and Aarif, K. O. M. 2020. Simulation Guided Microfluidic Design for Multitarget Separation Using Dielectrophoretic Principle. Biochip Journal. 14(4): 390-404.

DOI: http://dx.doi.org/10.1007/s13206-020-4406-x.

Pandey, C. M., Augustine, S., Kumar, S., Kumar, S., Nara, S., Srivastava, S. and Malhotra, B. D. 2018. Microfluidics Based Point-of-Care Diagnostics. Biotechnology Journal. 13(1): 1-11.

DOI: http://dx.doi.org/10.1002/biot.201700047.

Baek, S., Radebaugh, R. and Bradley, P. E. 2020. A New Method for Heat Transfer Coefficient Measurements of Single-Phase Fluids During Laminar Flow in Microchannels. International Journal of Heat and Mass Transfer. 157.

DOI: 10.1016/j.ijheatmasstransfer.2020.119891.

Mitra, P., Dutta, S., Nagahanumaiah and Hens, A. 2020. Separation of Particles in Spiral Micro-Channel Using Dean’s Flow Fractionation. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 42(8): 1-12.

DOI : http://dx.doi.org/10.1007/s40430-020-02482-4.

Shah, I., Kim, S. W., Kim, K., Doh, Y. H. and Choi, K. H. 2019. Experimental and Numerical Analysis of Y-Shaped Split and Recombination Micro-Mixer with Different Mixing Units. Chemical Engineering Journal. 358: 691-706.

DOI: http://dx.doi.org/10.1016/j.cej.2018.09.045.

Chen, M. Di, Yang, Y. T., Deng, Z. Y., Xu, H. Y., Deng, J. N., YANG, Z., HU, N., et al. 2019. Microchannel with Stacked Microbeads for Separation of Plasma from Whole Blood. Chinese Journal of Analytical Chemistry. 47(5): 661-668.

DOI: http://dx.doi.org/10.1016/S1872-2040(19)61157-6.

Zhong, R., Wu, N. and Liu, Y. 2019. Microfluidic Human Blood Plasma Separation for Lab on Chip Based Heavy Metal Detections. ECS Transactions. 41(38): 11-16.

DOI: http://dx.doi.org/10.1149/1.3697855.

Guan, Y., Liu, Y., Lei, H., Liu, S., Xu, F., Meng, X., Bai, M., et al. 2020. Dielectrophoresis Separation of Platelets Using a Novel Zigzag Microchannel. Micromachines. 11(10).

DOI: http://dx.doi.org/10.3390/mi11100890.

Oshii, K., Je-Eun CHOI, Obara, H. and Takei, M. 2010. Measurement of Dielectrophoretic Velocities of Microparticles in a Minichannel. Journal of the Japanese Society for Experimental Mechanics. 10: s79-s84.

DOI: http://dx.doi.org/10.11395/jjsem.10.s79.

Othman, N., T., A. and Lee, C. S. 2021. Simulation Study on the Effect of Dielectrophoresis Force on a Separation of Platelet from Blood Cell in a 3D Mini Channel. Journal Engineering. 33(2): 249-255.

DOI: http://dx.doi.org/10.17576/jkukm-2021-33(2)-08.

Gifford, S. C., Strachan, B. C., Xia, H., Vörös, E., Torabian, K., Tomasino, T. A., Griffin, G. D., et al. 2018. A Portable System for Processing Donated Whole Blood into High Quality Components Without Centrifugation. PLoS ONE. 13(1): 1-20.

DOI: http://dx.doi.org/10.1371/journal.pone.0190827.

Kim, J., Antaki, J. F. and Massoudi, M. 2016. Computational Study of Blood Flow in Microchannels. Journal of Computational and Applied Mathematics. 292(July): 174-187.

DOI: http://dx.doi.org/10.1016/j.cam.2015.06.017

Tripathi, S. & Agrawal, A. 2020. Blood Plasma Microfluidic Device: Aiming for the Detection of COVID-19 Antibodies Using an On-Chip ELISA Platform. Transactions of the Indian National Academy of Engineering. 5(2): 217-220.

DOI: http://dx.doi.org/10.1007/s41403-020-00123-9.

Yang, F., Zhang, Y., Cui, X., Fan, Y., Xue, Y., Miao, H. and Li, G. 2019. Extraction of Cell-Free Whole Blood Plasma Using a Dielectrophoresis-Based Microfluidic Device. Biotechnology Journal. 14(3).

DOI: http://dx.doi.org/10.1002/biot.201800181.

Pohl, H. A., Pollock, K. and Crane, J. S. 1978. Dielectrophoretic Force: A Comparison of Theory and Experiment. Journal of Biological Physics. 6(3-4): 133-160.

DOI: http://dx.doi.org/10.1007/BF02328936.

Yang, J. 1999. Cell Separation on Microfabricated Electrodes Using Dielectrophoretic/Gravitational Field-Flow Fractionation. Analytical Chemistry. 71(5): 911-918.

DOI: http://dx.doi.org/10.1021/ac981250p.

Zhang, Y. and Chen, X. 2020. Dielectrophoretic Microfluidic Device for Separation of Red Blood Cells and Platelets: A Model-Based Study. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 42(2).

DOI: http://dx.doi.org/10.1007/s40430-020-2169-x.

Meijer, H. E. H., Singh, M. K., Kang, T. G., Den Toonder, J. M. J. and Anderson, P. D. 2009. Passive and Active Mixing in Microfluidic Devices. Macromolecular Symposia. 279(1): 201-209.

DOI: http://dx.doi.org/10.1002/masy.200950530.

Tripathi, S., Varun Kumar, Y. V. B., Prabhakar, A., Joshi, S. S. and Agrawal, A. 2015. Passive Blood Plasma Separation at The Microscale: A Review of Design Principles and Microdevices. Journal of Micromechanics and Microengineering. 25(8): 83001.

DOI: http://dx.doi.org/10.1088/0960-1317/25/8/083001.

Luo, T., Fan, L., Zeng, Y., Liu, Y., Chen, S., Tan, Q., Lam, and R. H. W., 2018. A Simplified Sheathless Cell Separation Approach Using Combined Gravitational-Sedimentation-Based Prefocusing and Dielectrophoretic Separation. Lab on a Chip. 18(11): 1521-1532.

DOI: http://dx.doi.org/10.1039/c8lc00173a.

Chandran, K., Dalal, I. S., Tatsumi, K. and Muralidhar, K. 2020. Numerical Simulation of Blood Flow Modeled as A Fluid- Particulate Mixture. Journal of Non-Newtonian Fluid Mechanics. 285(February): 104383.

DOI: http://dx.doi.org/ 10.1016/j.jnnfm.2020.104383.

Murali, C. and Nithiarasu, P. 2017. Red Blood Cell (RBC) Aggregation and Its Influence on Non-Newtonian Nature of Blood In Microvasculature. Journal of Modeling in Mechanics and Materials. 1(1).

DOI: http://dx.doi.org/10.1515/jmmm-2016-0157.

Qian, C., Huang, H., Chen, L., Li, X., Ge, Z., Chen, and T., Yang, Z. 2014. Dielectrophoresis for Bioparticle Manipulation. International Journal of Molecular Sciences. 15(10): 18281-18309.

DOI: http://dx.doi.org/10.3390/ijms151018281.

Downloads

Published

2022-01-27

How to Cite

Ali Othman, N. T. ., Sahul Hameed, H., & Rosli, M. I. . (2022). SIMULATION ON RED BLOOD CELL’S SEPARATION IN MICROCHANNEL BY USING COMSOL© MULTIPHYSICS. Jurnal Teknologi, 84(2), 103-112. https://doi.org/10.11113/jurnalteknologi.v84.17708

Issue

Section

Science and Engineering