MAGNETIC AND MICROWAVE ABSORBING PROPERTIES IN SEMI-HARD COXFE(3-X)O4 SYNTHESIZED BY SOL-GEL METHOD
DOI:
https://doi.org/10.11113/jurnalteknologi.v85.17741Keywords:
Magnetic materials, CoxFe(3-x)O4 system, sol-gel method, magnetic properties, microwave absorption, reflection lossAbstract
Magnetic and microwave absorption properties of CoxFe(3-x)O4 semi-hard materials (x = 0.75, 1.0, and 1.5) synthesized have been carried out using the chemical method of sol-gel. The mixture of iron nitrate Fe2(NO3)3 and cobalt nitrate Co(NO3)2 dissolved in ethylene glycol, then the mixture was heated while stirring at 60 °C for 1 hour to form a gel. After that dried at a temperature of 120°C for 5 hours. A fine powder of CoxFe(3-x)O4 was obtained through the grinding process. The CoxFe(3-x)O4 powder crystallization was done by sintering at 1000 °C for 5 hours. The X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Vibrating-sample magnetometer (VSM), and Vector Network Analyzer (VNA) is used to investigate phase identification, particle morphology, magnetic properties, and microwave absorption ability, respectively. Based on the phase identification show that the samples with composition x = 0.75 have two phases, namely CoFe2O4 and Fe2O3. The sample composition for x ³ 1 is a single phase of CoFe2O4. The particle morphology is homogeneous with spherical and the particle size is about 100 – 500 nm. The samples act ferromagnetic behavior with a saturation magnetization (Ms) of 26.1-40.4 emu/g and coercivity field (Hc) of 223-299 Oe. The maximum reflection loss (RL) value of -14.03 dB at the frequency 10.98 GHz occurred in a single-phase sample with a composition of x = 1.0. This study provided a new composite material with great potential for the development of microwave-absorbing materials.
References
Bayrakdar, H. 2012. Electromagnetic Propagation and Absorbing Property of Ferrite-Polymer Nanocomposite Structure. Progress in Electromagnetics Research. 25: 269-281. https://doi.org/10.2528/pierm12072303.
Hapishah, A. N., Syazwan, M. M., Hamidon, M. N. 2018. Synthesis and Characterization of Magnetic and Microwave Absorbing Properties in Polycrystalline Cobalt Zinc Ferrite (Co0.5Zn0.5Fe2O4) Composite. Journal of Materials Science: Materials in Electronics. 29: 20573-20579. https://doi.org/10.1007/s10854-018-0192-9.
Jiang, Q., Li, H., Cao, Z., Li, H., Wang, Q., Jiang, Z., Kuang, Q., Xie, Z. 2017. Synthesis and Enhanced Electromagnetic Wave Absorption Performance of Amorphous CoxFe10-x Alloys. Journal of Alloys and Compounds. 726: 1255-1261. http://dx.doi.org/10.1016/j.jallcom.2017.08.066.
Husain, M., Misbah-ul-Islam, Meydan, T., Cuenca, J. A., Melikhov, Y., Mustafa, G., Murtaza, G., Jamil, Y. 2018. Microwave Absorption Properties of CoGd Substituted ZnFe2O4 Ferrites Synthesized by Co-precipitation Technique. Ceramics International. 44(6): 5909-5914. https://doi.org/10.1016/j.ceramint.2017.12.145.
Jian, G., Fu, Q., Zhou D. 2012. Particles Size Effects of Single Domain CoFe2O4 on Suspensions Stability. Journal of Magnetism and Magnetic Materials. 324: 671-676. https://doi.org/10.1016/j.jmmm.2011.08.036.
Ding, Y., Liao, Q., Liu, S., Guo, H., Sun, Y., Zhang G., & Zhang, Y. 2016. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption. Scientific Reports 6: 32381. https://doi.org/10.1038/srep32381.
Kuruva, P., Matteppanavar, S., Srinath, S. and Thomas, T. 2014. Size Control and Magnetic Property Trends in Cobalt Ferrite Nanoparticles Synthesized Using an Aqueous Chemical Route. IEEE Transactions on Magnetics. 50(1): 5200108. https://doi.org/10.1109/tmag.2013.2283467.
Ristic, M., Krehula, S., Reissner, M., Jean, M., Hannoyer, B., Musi, S. 2017. Synthesis and Properties of Precipitated Cobalt Ferrite Nanoparticles. Journal of Molecular Structure. 1140: 32-38. http://dx.doi.org/10.1016/j.molstruc.2016.09.067.
Sha, A. L., Hassan R.A, Alharbi, A. A., Alomayri, T. and Alamri, H. 2017. Magnetic Hyperthermia using Cobalt Ferrite Nanoparticles: The Influence of Particle Size. Int J Adv Technol. 8: 196. https://doi.org/10.4172/0976-4860.1000196.
Ponce, A. S., Chagas, E. F., Prado, R. J., Fernandes, C. H. M., Terezo, A. J., Baggio-Saitovitch, E. 2013. High Coercivity Induced by Mechanical Milling in Cobalt Ferrite Powders. Journal of Magnetism and Magnetic Materials. 344: 182-187. https://doi.org/10.1016/j.jmmm.2013.05.056.
de Freitas, M. R., de Gouveia, G. L., Costa, L. J. D., de Oliveira, A. J. A., Kiminami, R. H. G. A. 2016. Microwave Assisted Combustion Synthesis and Characterization of Nanocrystalline Nickel-doped Cobalt Ferrites. Materials Research. 19(Suppl. 1): 27-32. http://dx.doi.org/10.1590/1980-5373-MR-2016-0077.
Xavier S, M. K. Jiji, Smitha Thankachan, E. M. Mohammed. 2014. Effect of Sintering Temperature on the Structural and Electrical Properties of Cobalt Ferrite Nanoparticles. AIP Conference Proceedings. 1576: 98. https://doi.org/10.1063/1.4861992.
Toby, B. H. 2001. EXPGUI, A Graphical User Interface for GSAS. Journal of Applied Crystallography. 34: 210. https://doi.org/10.1107/S0021889801002242.
Imam, N. G., Ismail, S. M., Elbahrawy, M. Y. and Hashhash A. M. 2014. Photoluminescence, Magnetic and Electrical Properties of Co-ferrite Nanoparticles Synthesised via Sol-gel Auto-combustion Method. Int. J. Nanoparticles. 7(3/4): 170-189. https://doi.org/10.1504/ijnp.2014.067601.
Nagasa, B. D., Raghavender ,A. T., Kabeta, K. L., Anjaneyulu, T., Regasa, M. B. 2015. Size Induced Structural and Magnetic Properties of Nanostructured Cobalt Ferrites Synthesized by Co-precipitation Technique. Sci. Technol. Arts Res. 4(1): 84-87, http://dx.doi.org/10.4314/star.v4i1.13.
Kadhum, J. K. and Zeyad, T. I. 2014. Microwave Properties of Spinal Ferrite. International Journal of Application or Innovation in Engineering & Management (IJAIEM). 3(9): 93-97. https://ijaiem.org/pabstract_Share.php?pid=IJAIEM-2014-09-03-1.
Yana Taryana, Yuyu Wahyu, Azwar Manaf, M. Manawan, Wisnu Ari Adi. 2022. Structural and Microwave Absorption Properties of BaFe(12–2x)SnxZnxO19 (x=0.05–1.0) Ceramic Magnets. Materialia. 23(2022): 101455. https://doi.org/10.1016/j.mtla.2022.101455.
Marki Microwave. 2017. Return Loss to VSWR Conversion Table, 215 Vineyard Court, Morgan Hill, CA 95037. www.markimicrowave.com.
Huang, X., Zhang, J., Xiao, S. and Chen, G. 2014. The Cobalt Zinc Spinel Ferrite Nanofiber: Lightweight and Efficient Microwave Absorber. J. Am. Ceram. Soc. 97(5): 1363-1366. https://doi.org/10.1111/jace.12909.
Li, G. M., Wang, L. C. and Xu, Y. 2014. Templated Synthesis of Highly Ordered Mesoporous Cobalt Ferrite and Its Microwave Absorption Properties. Chin. Phys. B. 23(8): 088105. https://doi.org/10.1088/1674-1056/23/8/088105.
Ismail, M. M., Rafeeq, S. N., Sulaiman, J. M. A., Mandal, A. 2018. Electromagnetic Interference Shielding and Microwave Absorption Properties of Cobalt Ferrite CoFe2O4/polyaniline Composite. Applied Physics A. 124(380): (1-12). https://doi.org/10.1007/s00339-018-1808-x.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.