ALLERGENIC POTENTIAL AND CROSS-REACTIVITY OF FUNGAL SPECIES ISOLATED FROM THE INDOOR ENVIRONMENT

Authors

  • Mai Shihah Abdullah Department of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia https://orcid.org/0000-0001-6335-3776
  • Ghassan Hadi Kttafah Biology Department, Mohsen Al-Hakim School, Thi-Qar Education Directorate, 64001 Nasiriyah, Iraq
  • Muhammad Haidar Nasuruddin Department of Orthopaedic, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia https://orcid.org/0000-0001-5809-9937

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17742

Keywords:

Fungi, sensitisation, potential allergenic agent, cross-reactivity, indoor environment

Abstract

Indoor fungi are potential sensitizing agents. Their detection and quantification in indoor environments are important in the diagnosis and environmental management of fungal allergies. This study aims to analyse the allergenic potential of ten fungal species and the cross-reactivity of the two most common fungi isolated from the indoor environment samples from Sultan Idris Education University buildings. Employing in vivo (skin prick test) and in vitro (immunoblotting), the major and minor allergenic proteins of ten fungi sensitized subjects were identified. Aspergillus fumigatus and Penicillium canescens were the most common fungi with the highest potential to trigger allergies. The cross-reactivity between them was detected by immunoblotting inhibition experiments using three selected sera from subjects sensitized to each of the aforementioned species. The immunoblotting test revealed multiple major and minor allergens. Among them were 11, 25, 33, 36 > 100 kDa and were also listed as causative agent triggering allergy by IUIS Allergen Nomenclature Subcommittee. Cross-reactivity of Aspergillus fumigatus against Penicillium canescens revealed that 9(64.29%) allergenic bands and 13(76.47%) allergenic bands were inhibited, respectively. Aspergillus spp. and Penicillium spp. with high cross-reactivity are most prevalent in the indoor environment of identified contaminated buildings at UPSI. Aspergillus fumigatus and Penicillium canescens can elicit sensitization among the atopic population and implicates worsening the condition of the symptomatic subjects with prolonged these fungal exposures.

References

Sharma, R., Gaur, S. N., Singh, V. P., & Singh, A. B. 2012. Association between Indoor Fungi in Delhi Homes and Sensitization in Children with Respiratory Allergy. Medical Mycology. 50(3): 281-290. https://doi.org/10.3109/13693786.2011.606850.

Fukutomi, Y., & Taniguchi, M. 2015. Sensitization to Fungal Allergens: Resolved and Unresolved Issues. Allergology International. 64(4): 321-331. https://doi.org/10.1016/j.alit.2015.05.007.

Wiszniewska, M., Walusiak-Skorupa, J., Pannenko, I., Draniak, M., & Palczynski, C. 2009. Occupational Exposure and Sensitization to Fungi among Museum Workers. Occupational Medicine. 59(4): 237-242.

https://doi.org/10.1093/occmed/kqp043.

Kim, H.-K., Lund, S., Baum, R., Rosenthal, P., Khorram, N., & Doherty, T. A. 2014. Innate Type 2 Response to Alternaria Extract Enhances Ryegrass-induced Lung Inflammation. International Archives of Allergy and Immunology. 163(2): 92-105. https://doi.org/10.1159/000356341.

Gabriel, M., Martínezb, J., & Postigoc, I. 2016. Fungal Allergens: Recent Trends and Future Prospects. https://ubibliorum.ubi.pt/bitstream/10400.6/4195/1/TESE%20MARTA%20GABRIEL_FEV2016.pdf.

Velayuthan, R. D., Samudi, C., Singh, H. K. L., Ng, K. P., Shankar, E. M., & Denning, D. W. 2018. Estimation of the Burden of Serious Human Fungal Infections in Malaysia. Journal of Fungi. 4(1): 1-8. https://doi.org/10.3390/jof4010038.

Prezant, B., Weekes, D. M., & Miller, J. D. (Eds.). 2008. Recognition, Evaluation, and Control lf Indoor Mold. Aiha. https://doi.org/10.1080/15459624.2012.666138.

Abdullah, M. S., & Kttafah, G. H. Identification of the Most Common Dust Fungi at Universiti Pendidikan Sultan Idris, Malaysia. Eurasian Journal of Chemistry. 14(3): 1-8. https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=XtWX3x0AAAAJ&cstart=20&pagesize=80&citation_for_view=XtWX3x0AAAAJ:Y0pCki6q_DkC.

Rath, P. M. 2001. Phenotypic and Genotypic Characterization of Reference Strains of the Genus Aspergillus. Mycoses. 44(3-4): 65-72 https://doi.org/10.1046/j.1439-0507.2001.00620.x.

Leila, S., Azar, S., Alireza, K., Mansour, B., & Amir, B. 2010. Determining Protein Patterns for Three Fungus Species Aspergillus fumigatus, Asp. flavus and Asp. niger, Obtained from the Outdoor Air in Iran. Glo Vet. 4(2): 130-4. http://www.idosi.org/gv/gv4(2)10/6.pdf.

Mbatchou, B. H. N., Noah, D. M., Motto, M. N., Njankaoul, Y. M. & Njock, R. 2016. Sensitization to Common Aeroallergens in a Population of Young Adults in a sub-Saharan Africa Setting: a Cross-sectional Study. Allergy Asthma Clin Immunol. 12: 1

DOI 10.1186/s13223-015-0107-8. https://link.springer.com/content/pdf/10.1186/s13223-015-0107-8.pdf.

Twaroch, T. E., Curin, M., Sterflinger, K., Focke-Teikl, M., Swoboda, I., Valenta R. 2016. Specific Antibodies for the Detection of Alternaria Allergens and the Identification of Cross-reactive Antigens in Other Fungi. Int Arch Allergy Immunol. 170(4): 269-278. Doi: 10.1159/000449415. Epub 2016 Oct 26. https://pubmed.ncbi.nlm.nih.gov/27780168/.

Rosmilah, M., Shahnaz, M., Zailatul, H. M. Y., Noormalin, A., & Normilah, I. 2012. Identification of Tropomyosin and Arginine Kinase as Major Allergens of Portunus pelagicus (blue swimming crab). Tropical Biomedicine. 29(3): 467-478. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.677.898&rep=rep1&type=pdf.

Sevinc, M. S., Kumar, V., Abebe, M., Lemieux, M., & Vijay, H. M. 2014. Isolation, Expression and Characterization of a Minor Allergen from Penicillium crustosum. Medical Mycology. 52(1): 81-89. https://doi.org/10.3109/13693786.2013.813086.

Shen, H. Der, Lin, W. L., Tam, M. F., Wang, S. R., Tsai, J. J., Chou, H., & Han, S. H. 1998. Alkaline Serine Proteinase: A Major Allergen of Aspergillus oryzae and Its Cross-reactivity with Penicillium citrinum. International Archives of Allergy and Immunology. 116(1): 29-35. https://doi.org/10.1159/000023921.

Andersson, A., Rasool, O., Schmidt, M., Kodzius, R., Flückiger, S., Zargari, A., ... & Scheynius, A. 2004. Cloning, Expression and Characterization of Two New IgE‐binding Proteins from the Yeast Malassezia sympodialis with Sequence Similarities to Heat Shock Proteins and Manganese Superoxide Dismutase. European Journal of Biochemistry. 271(10): 1885-1894. https://doi.org/10.1111/j.1432-1033.2004.04098.x.

Chou, H., Lai, H. Y., Tam, M. F., Chou, M. Y., Wang, S. R., Han, S. H., & Shen, H. D. 2002. cDNA Cloning, Biological and Immunological Characterization of the Alkaline Serine Protease Major Allergen from Penicillium chrysogenum. International Archives of Allergy and Immunology. 127(1): 15-26. https://doi.org/10.1159/000048165.

Crameri, R. 1998. Recombinant Aspergillus Fumigatus Allergens: from the Nucleotide Sequences to Clinical Applications. International Archives of Allergy and Immunology. 115(2): 99-114. https://doi.org/10.1159/000023889

Kurup, V. P., Shen, H. Der, & Vijay, H. 2002. Immunobiology of Fungal Allergens. International Archives of Allergy and Immunology. 129: 181-188. https://doi.org/10.1159/000066780.

Kolattukudy, P. E., Lee, J. D., Rogers, L. M., Zimmerman, P., Ceselski, S., Fox, B., & Copelan, E. A. 1993. Evidence for Possible Involvement of an Elastolytic Serine Protease in Aspergillosis. Infection and Immunity. 61(6): 2357-2368. https://doi.org/10.1128/iai.61.6.2357-2368.1993.

Hemmann, S., Blaser, K., & Crameri, R. 1997. Allergens of Aspergillus fumigatus and Candida boidinii Share IgE-binding Epitopes. American Journal of Respiratory and Critical Care Medicine. 156(6): 1956-1962. https://doi.org/10.1164/ajrccm.156.6.9702087.

Kurup, V. P., & Banerjee, B. 2000. Fungal Allergens and Peptide Epitopes. Peptides. 21(4): 589-599. https://doi.org/10.1016/S0196-9781(00)00181-9.

Banerjee, B., Greenberger, P. A., Fink, J. N., & Kurup, V. P. 1998. Immunological Characterization of Asp f 2, a Major Allergen from Aspergillus fumigatus Associated with Allergic Bronchopulmonary Aspergillosis. Infection and Immunity. 66(11): 5175-5182. https://doi.org/10.1128/IAI.66.11.5175-5182.1998.

Shrestha, G. R. 2016. Prevalence of Aeroallergens in the Atmosphere of Kathmandu Nepal and Chittagong, Bangladesh. Nepal Science Olympiad. 1(1): 29.

http://nepalscienceolympiad.org.np/wpcontent/uploads/2015/11/Revised-Journal-1.pdf#page=34

Austen, B., McCarthy, H., Wilkins, B., Smith, A., & Duncombe, A. 2001. Fatal Disseminated Fusarium Infection in Acute Lymphoblastic Leukaemia in Complete Remission. Journal of Clinical Pathology. 54(6): 488-490.

http://dx.doi.org/10.1136/jcp.54.6.488

Yeh, C. C., Tai, H. Y., Chou, H., Wu, K. G., & Shen, H. Der. 2016. Vacuolar Serine Protease is a Major Allergen of Fusarium proliferatum and an IgE-cross Reactive Pan-fungal Allergen. Allergy, Asthma and Immunology Research. 8(5): 438-444 https://doi.org/10.4168/aair.2016.8.5.438.

Doehlemann, G., Ökmen, B., Zhu, W., & Sharon, A. 2017. Plant Pathogenic Fungi. The Fungal Kingdom. 701-726. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016.

Crameri, Reto, Zeller, S., Glaser, A. G., Vilhelmsson, M., & Rhyner, C. 2009. Cross-reactivity among Fungal Allergens: A Clinically Relevant Phenomenon? Mycoses. 52(2): 99-106. https://doi.org/10.1111/j.1439-0507.2008.01644.x.

Ghassan Hadi Kttafah, Mai Shihah Abdullah, Muhammad Haidar Nasuruddin and Hasan Ali Alsailawi. 2020. Aeroallergen Sensitizations with Special Reference to Fungi Sensitization among the Community of Sultan Idris Education University, Malaysia. Indian Journal of Ecology. 47(4): 1099-1106. https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=XtWX3x0AAAAJ&cstart=20&pagesize=80&citation_for_view=XtWX3x0AAAAJ:RHpTSmoSYBkC.

Downloads

Published

2022-03-31

Issue

Section

Science and Engineering

How to Cite

ALLERGENIC POTENTIAL AND CROSS-REACTIVITY OF FUNGAL SPECIES ISOLATED FROM THE INDOOR ENVIRONMENT. (2022). Jurnal Teknologi, 84(3), 47-57. https://doi.org/10.11113/jurnalteknologi.v84.17742