EFFECTS OF FUNNELIFORMIS MOSSEAE INOCULATION ON CHILI PEPPER GROWTH UNDER REPEATED DROUGHT STRESS
DOI:
https://doi.org/10.11113/jurnalteknologi.v84.17766Keywords:
Arbuscular mycorrhizae, Capsicum frutescens L., drought stress, Funneliformis mosseae, symbiotic associationAbstract
Chili pepper (Capsicum frutescens L.) is a common commodity used as spice and pharmaceutical uses around the world. However, chili pepper cultivation failure often occurs due to drought exposure. The inoculation of arbuscular mycorrhizal fungi (AMF), such as Funneliformis mosseae, has the potential to induce defense against drought stress through symbiotic association with plant roots. The aim of this research was to investigate the effects of F. mosseae inoculation on the growth of chili pepper under repeated drought stress. Chili pepper plants were exposed to three drought regimes for two cycles, with one rewatering event between the cycles. The plant agronomic variables, physiological performance, and microorganism parameters were observed. The results showed that the plant height, fresh and dry shoot weight, along with fresh and dry root weight increased significantly with F. mosseae inoculation under repeated drought stress. The F. mosseae treatment also increased water relative content and decreased proline and lipid peroxidation significantly. Although drought exposure decreased the AMF root colonization rate, the total microbial activity and glomalin-related soil protein were still increased by the F. mosseae inoculation. However, F. mosseae inoculation was negatively correlated to the abundance of phosphate solubilizing microorganisms. The results suggested that F. mosseae gave positive effects on C. frutescens L. growth under repeated drought stress through induced morphological and physiological responses.
References
Leng, T. W., Muhamad, I. I., Zaidel, D. N. A., and Khairuddin, N. 2013. Evaluation of Capsaicinoids Extracts as Bioactive Substance for Antimicrobial Films. Jurnal Teknologi (Sciences & Engineering). 64(2): 69-74.
Zhani, K., Hamdi, W., Sedraoui, S., Fendri, R., Lajimi, O., and Hannachi, C. 2015. A Comparative Study of Morphological Characterization of Tunisian Accessions of Chili Pepper (Capsicum frutescens L.). International Research Journal of Engineering and Technology. 02(04): 87-94.
Davies, Jr., F. T., Olalde-Portugal, V., Aguilera-Gomez, L., Alvarado, M. C., Ferrera-Cerrato, R. C., and Boutton, T. W. 2002. Alleviation of Drought Stress of Chile Ancho Pepper (Capsicum annuum L. cv. San Luis) with Arbuscular Mycorrhiza Indigenous to Mexico. Scientia Horticulturae. 92: 347-359.
Tallapragada, P., Dikshit, R., and Seshagiri, S. 2016. Influence of Rhizophagus spp. and Burkholderia seminalis on the Growth of Tomato (Lycopersicon esculatum) and Bell Pepper (Capsicum annuum) under Drought Stress. Communications in Soil Science and Plant Analysis. 47(17): 1975-1984.
Bakr, J., Pék, Z., Helyes, L., and Posta, K. 2018. Mycorrhizal Inoculation Alleviates Water Deficit Impact on Field-grown Processing Tomato. Polish Journal of Environmental Studies. 27(5): 1949-1958.
Nadarajah, K. K. 2020. ROS Homeostasis in Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences. 21: 1-29.
Yusof, F., Hui-Mean, F., Suhaila, S., and Ching-Yee, K. 2012. Trend Analysis for Drought Event in Peninsular Malaysia. Jurnal Teknologi (Sciences & Engineering). 57: 211-218.
Meisner, A., Jacquiod, S., Snoek, B. L., ten Hooven, F. C., and van der Putten, W. H. 2018. Drought Legacy Effects on the Composition of Soil Fungal and Prokaryote Communities. Frontiers in Microbiology. 9(294): 1-12.
Wang, F., and Feng, G. 2021. Arbuscular Mycorrhizal Fungi Interactions in the Rhizosphere. In: Gupta, V. V. S. R., and Sharma, A. K. (eds.). Rhizosphere Biology: Interactions Between Microbes and Plants. Singapore: Springer.
Pandey, V., and Shukla, A. 2015. Acclimation and Tolerance Strategies of Rice Under Drought Stress. Rice Science. 22(4): 147-161.
Basu S., Ramegowda, V., Kumar A., and Pereira, A. 2016. Plant Adaptation to Drought Stress. F1000Research 5(1554): 1-10.
Tátrai, Z. A., Sanoubar, R., Pluhár, Z., Mancarella, S., Orsini, F., and Gianquinto, G. 2016. Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus. International Journal of Agronomy. 2016: 1-8.
Chen, W., Meng, P., Feng, H., and Wang, C. 2020. Effects of Arbuscular Mycorrhizal Fungi on Growth and Physiological Performance of Catalpa bungei C.A.Mey. under Drought Stress. Forests. 11(1117): 1-29.
Wu, H.-H., Zou, Y.-N., Rahman, M. M., Ni, Q.-D., and Wu, Q.-S. 2017. Mycorrhizas Alter Sucrose and Proline Metabolism in Trifoliate Orange Exposed to Drought Stress. Scientific Reports. 7(42389): 1-10.
Zarik, L., Meddich, A., Hijri, M., Hafidi, M., Ouhammou, A., Ouahmane, L., Duponnois, R., and Boumezzough, A. 2016. Use of Arbuscular Mycorrhizal Fungi to Improve the Drought Tolerance of Cupressus atlantica G. Comptes Rendus Biologies. 339: 185-196.
Singh, R. K., Dai, O., and Nimasow, G. 2011. Effect of Arbuscular Mycorrhizal (AM) Inoculation on Growth of Chili Plant in Organic Manure Amended Soil. African Journal of Microbiology Research. 5(28): 5004-5012.
Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., Cascone, P., Schubert, A., Gambino, G., Balestrini, R. and Guerrieri, E. 2016. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress. Plant Physiology. 171: 1009-1023.
Nacoon, S., Ekprasert, J., Riddech, N., Mongkolthanaruk, W., Jogloy, S., Vorasoot, N., Cooper, J. and Boonlue, S. 2021. Growth Enhancement of Sunchoke by Arbuscular Mycorrhizal Fungi under Drought Condition. Rhizosphere. 17(100308): 1-10.
Endlweber, K., and Scheu, S. 2006. Establishing Arbuscular Mycorrhiza-free Soil: A Comparison of Six Methods and Their Effects on Nutrient Mobilization. Applied Soil Ecology. 34(2006): 276-279.
Brundrett, M., Bougher, N., Dell, B., Grove, T., and Malajczuk, N. 1996. Working with Mycorrhizas in Forestry and Agriculture. AClAR Monograph.
Koske, R. E., and Gemma, J. N. 1989. A Modified Procedure for Staining Roots to Detect VA Mycorrhizas. Mycological Research. 92(4): 486-505.
Giovannetti, M., Sbrana, C., Strani, P., Agnolucci, M., Rinaudo, V., and Avio, L. 2003. Genetic Diversity of Isolates of Glomus mosseae from Different Geographic Areas Detected by Vegetative Compatibility Testing and Biochemical and Molecular Analysis. Applied and Environmental Microbiology. 69(1): 616-624.
Boonlue, S., Surapat, W., Pukahuta, C., Suwanarit, P., Suwanarit, A., and Morinaga, T. 2012. Diversity and Efficiency of Arbuscular Mycorrhizal Fungi in Soils from Organic Chili (Capsicum frutescens) Farms. Mycoscience. 53: 10-16.
Begum, N., Qin, C., Ahanger, M. A. Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., and Zhang, L. 2019. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science. 10(1068): 1-15.
Krishna, M. S. R., Lakshmisahitya, U., Ch, L. S., Rani, N. S., Tabitha, K., and Akshitha, V. B. 2018. Arbuscular Mycorrhizal Symbiosis Alters Morphological and Biochemical Indices in Hot Pepper (Capsicum annuum L.) under Drought Stress. International Journal of Green Pharmacy. 12(2): 75-81.
Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., Salami, S. A., and Babalar, M. 2019. Morphological, Physiochemical and Antioxidant Responses of Maclura pomifera to Drought Stress. Scientific Reports. 9(19250): 1-12.
da Silva, C. F., Pereira, M. G., Gomes, J. H. G., Fontes, M. A., and da Silva, E. M. R. 2020. Enzyme Activity, Glomalin, and Soil Organic Carbon in Agroforestry Systems. Floresta e Ambiente. 27(3): 1-9.
Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry. 72: 248-254.
Adam, G., and Duncan, H. 2001. Development of a Sensitive and Rapid Method for the Measurement of Total Microbial Activity using Fluorescein Diacetate (FDA) in a Range of Soils. Soil Biology and Biochemistry. 33(7-8): 943-951.
Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H., and Baldani, V. L. D. 2014. The Art of Isolating Nitrogen-fixing Bacteria From Non-Leguminous Plants using N-free semi-Solid Media: A Practical Guide for Microbiologists. Plant Soil. 1-19.
Suliasih, and Widawati, S. 2005. Isolation and Identification of Phosphate Solubilizing and Nitrogen Fixing Bacteria from Soil in Wamena Biological Garden, Jayawijaya, Papua. Biodiversitas. 6(5): 175-177.
Egan, C., Li, D.-W., and Klironomos, J. 2014. Detection of Arbuscular Mycorrhizal Fungal Spores in the Air Across Different Biomes and Ecoregions. Fungal Ecology. 12(2014): 26-31.
Sulistiono, W., Taryono, Yudono, P., and Irham. 2018. Application of Arbuscular Mycorrhizal Fungi Accelerates the Growth of Shoot Roots of Sugarcane Seedlings in the Nursery. Australian Journal of Crop Science. 12(7): 1082-1089.
Kenzo, T., Ichie, T., Watanabe, Y., Yoneda, R., Ninomiya, I., and Koike, T. 2006. Changes in Photosynthesis and Leaf Characteristics with Tree Height in Five Dipterocarp Species in a Tropical Rain Forest. Tree Physiology. 26: 865-873
Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y., and Feng, H. 2019. Mechanistic Insights into Arbuscular Mycorrhizal Fungi-mediated Drought Stress Tolerance in Plants. International Journal of Molecular Sciences. 20: 1-18.
Khalid, A., and Aftab, F. 2020. Effect of Exogenous Application of IAA and GA3 on Growth, Protein Content, and Antioxidant Enzymes of Solanum tuberosum L. Grown In Vitro Under Salt Stress. In Vitro Cellular & Developmental Biology – Plant. 56: 377-389.
Diagne, N., Ngom, M., Djighaly, P.I., Fall, D., Hocher, V., and Svistoonoff, S. 2020. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity. 12(370): 1-25.
Szabados, L., and Savouré, A. 2010. Proline: a Multifunctional Amino Acid. Trends in Plant Science. 15(2): 89-97.
Song, X., Wang, Y., Lv, X. 2016. Responses of Plant Biomass, Photosynthesis and Lipid Peroxidation to Warming and Precipitation Change in Two Dominant Species (Stipa grandis and Leymus chinensis) from North China Grasslands. Ecology and Evolution. 6(6): 1871-1882.
Recchia, G. H., Konzen, E. R., Cassieri, F., Caldas, D. G. G., and Tsai, S. M. 2018. Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Drought-responsive Genes in Tissue-specific Root Cells of Common Bean. Frontiers in Microbiology. 9(1339): 1-24.
Al-Arjani, A.-B. F., Hashem, A., and Abd-Allah, E. F. 2020. Arbuscular Mycorrhizal Fungi Modulates Dynamics Tolerance Expressionto Mitigate Drought Stress in Ephedra foliata Boiss. Saudi Journal of Biological Sciences. 27: 380-394.
Zhu, X., Song, F., and Liu, S. 2011. Arbuscular Mycorrhiza Impacts on Drought Stress of Maize Plants by Lipid Peroxidation, Proline Content and Activity of Antioxidant System. Journal of Food, Agriculture & Environment. 9(2): 583-587.
Luo, W., Xu, C., Ma, W., Yue, X., Liang, X., Zuo, X., Knapp, A. K., Smith, M. D., Sardans, J., Dijkstra, F. A., Peñuelas, J., Bai, Y., Wang, Z., Yu, Q., and Han, X. 2018. Effects of Extreme Drought on Plant Nutrient Uptake and Resorption In Rhizomatous Vs Bunchgrass-Dominated Grasslands. Oecologia. 188: 633-643.
Aseri, G. K., and Tarafdar, J. C. 2006. Fluorescein Diacetate: A Potential Biological Indicator for Arid Soils. Arid Land Research and Management. 20: 1-13.
de Oliveira Freitas, N., Yano-Melo, A. M., da Silva, F. S. B., de Melo, N. F., Maia, L. C. 2011. Soil Biochemistry and Microbial Activity in Vineyards Under Conventional and Organic Management at Northeast Brazil. Scientia Agricola. 68(2): 223-229.
Han, L.-L., Wang, Q., Shen, J.-P., Di, H.J., Wang, J.-T., Wei, W.-X., Fang, Y.-T., Zhang, L.-M., He, J.-Z. 2019. Multiple Factors Drive the Abundance and Diversity of the Diazotrophic Community in Typical Farmland Soils of China. FEMS Microbiology Ecology. 95(8): 1-10.
Mar Vázquez, M., César, S., Azcón, R., and Barea, J. M. 2000. Interactions between Arbuscular Mycorrhizal Fungi and other Microbial Inoculants (Azospirillum, Pseudomonas, Trichoderma) and their Effects on Microbial Population and Enzyme Activities in the Rhizosphere of Maize Plants. Applied Soil Ecology. 15(3): 261-272.
Naylor, D., and Coleman-Derr, D. 2018. Drought Stress and Root-Associated Bacterial Communities. Frontiers in Plant Science. 8(2223): 1-16.
Ordoñez, Y. M., Fernandez, B. R., Lara, L. S., Rodriguez, A., Uribe-Vélez, D., and Sanders, I. R. 2016. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth both Inside and Outside the Root and in the Presence of Native Microbial Communities. PLoS ONE. 11(6): 1-18.
Zhang, F., Hodge, A., and Feng, G. 2016. Carbon and Phosphorus Exchange May Enable Cooperation between an Arbuscular Mycorrhizal Fungus and a phosphate-Solubilizing Bacterium. New Phytologist. 210: 1022-1032. DOI: 10.1111/nph.13838.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.