A NEW REPORT ON USING A LACCASE PRODUCING YEAST FOR MELANOIDIN DEGRADATION AND ELECTRICITY GENERATION BY MICROBIAL FUEL CELL

Authors

  • Chaijak Pimprapa ᵃMicrobial Fuel Cell & Bioremediation Laboratory, Faculty of Science, Thaksin University, Phatthalung, Thailand ᵇMicrobial Technology for Agriculture, Food and Environment Research Center, Thaksin University, Phatthalung, Thailand https://orcid.org/0000-0003-3953-693X
  • Sinkan Purimprach Microbial Fuel Cell & Bioremediation Laboratory, Faculty of Science, Thaksin University, Phatthalung, Thailand
  • Wetchapan Patcharida Microbial Fuel Cell & Bioremediation Laboratory, Faculty of Science, Thaksin University, Phatthalung, Thailand

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17875

Keywords:

Decolorization, laccase, palm oil milled, biocatalyst, bioremediation

Abstract

Palm oil milled effluent (POME) is one of the most environmental concerned industrial wastewater owing to its complex structure. Melanoidin is a highly stable content in POME that caused the dark color. In this study, the Galactomyces sp. rich consortium TM11 with high laccase activity was used to remove a contaminated melanoidin from raw POME. Besides, the single chamber ceramic microbial fuel cell (sCMFC) was developed to eliminate melanoidin and simultaneously generate electrical power. The results indicated that the maximal current density and power density of 215.56±5.09 mA/m2 and 139.44±6.56 mW/m2 were reached. Whereas the melanoidin removal of 83.50±2.93%  was obtained. This study was the first reported of using laccase producing yeast comsortium to remove melanoidin and generate electrical power.

References

Poh, P. E., Yong, W. J., Chong, M. F. 2010. Palm Oil Mill Effluent (POME) Characteristic in High Crop Season and the Applicability of High-rate Anaerobic Bioreactors for the Treatment of POME. Industrial & Engineering Chemistry Research. 49(22): 11732-11740.

DOI: https://doi.org/10.1021/ie101486w.

Ward, H. 2020. Production Value of Oil Palm in Thailand from 2010-2019. New York (United State: Statista, 2 April 2020).

Madaki, Y. S., Seng, L. 2013. Palm Oil Mill Effluent (POME) from Malaysia Palm Oil Mills: Waste or Resource. International Journal of Science, Environment and Technology. 2(6): 1138-1155.

Soleimaninanadegani, M., Manshad, S. 2014. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms. International Scholarly Research Notices. 2014: 1-8.

DOI: https://doi.org/10.1155/2014/727049.

Plavsic, M., Cosovic, B., Lee, C. 2006. Copper Complexing Properties of Melanoidins and Marine Humic Material. Science of the Total Environment. 366: 310-319.

DOI: http://doi.org/10.1016/j.scitotenv.2005.07.011.

Chandra, R., Bharagava, R. N., Rai, V. 2008. Melanoidins as Major Colourant in Sugarcane Molasses based Distillery Effluent and Its Degradation. Bioresource Technology. 99: 4648-4660.

DOI: https://doi.org/10.1016/j.biortech.2007.09.057.

Rizvi, S., Singh, A., Gupta, S. K. 2022. A Parametric Study using Box-Behnken Design for Melanoidin Removal via Cu-impregnated Activated Carbon Prepared from Waste Leaves Biomass. Applied Water Science. 12: 81.

DOI: https://doi.org/10.1007/s13201-022-01620-8.

Rafigh, S. M., Soleymani, A. R. 2019. Melanoidin Removal from Molasses Wastewater using Graphene Oxide Nanosheets. Separation Science and Technology. 55(13): 2281-2293.

DOI: https://doi.org/10.1080/01496395.2019.1626424.

Tripathi, S., Sharma, P., Purchase, D., Tiwari, M., Charabarty, D., Chandra, R. 2021. Biodegradation of Orano-metallic Pollutants in Distillery Wastewater Employing a Bioaugmentation Process. Environment Technology & Innovation. 23: 101774.

DOI: https://doi.org/10.1016/j.eti.2021.101774.

Jembere, A. L., Genet, M. B. 2021. Comparative adsorptive performance of adsorbents developed from sugar industrial wastes for the removal of melanoidin pigment from molasses distillery spent wash. Water Resources and Industry. 26: 100165.

DOI: https://doi.org/10.1016/j.wri.2021.100165.

Boonprasit, P., Sakairi, N., Uan-On, T., Nitayapat, N. 2021. Treatment of Biomethanated Wastewater with a Quaternised Chitosan. Water and Environment Journal. 35(4): 1272-1280.

DOI: https://doi.org/10.1111/wej.12717.

Chowdhary, P., Raj, A., Bharagava, R. N. 2018. Environmental Pollution and Health Hazards from Distillery Wastewater and Treatment Approaches to Combat the Environmental Threats: A Review. Chemosphere. 194: 229-246.

DOI: https://doi.org/10.1016/j.chemosphere.2017.11.163.

Chandra, R., Singh, H. 1999. Chemical Decolourisation of Anaerobically Treated Distillery Effluent. Journal of Environmental Protection. 19(11): 833-837.

Limkhuansuwan, V., Chaiprasert, P. 2010. Decolorization of Molasses Melanoidin and Palm Oil Mill Effluent Phenolic Compounds by Fermentative Lactic Acid Bacteria. Journal of Environmental Science. 22(8): 1209-1217.

DOI: https://doi.org/10.1016/s1001-0742(09)60240-0.

Piontek, K., Antorini, M., Choinowski, T. 2002. Crystal Structure of Laccase from the Fungus Trametes versicolor at 1.90 A Resolution Containing a Full Complement of Coppers. Journal of Biological Chemistry. 277(40): 37663-37669.

DOI: https//doi.org/ 10.1074/jbc.M204571200.

Yanto, D. H. Y., Auliana, N., Anita, S. H., Watanabe, T. 2019. Decolorization of Synthetic Textile Dyes by Laccase from Newly Isolated Trametes hirsuta EDN084 Mediated by Violuric Acid. Earth and Environmetal Science. 374: 1-7.

Neoh, C. H., Lam, C. Y., Lim, C. K., Yahya, A., Ibrahim, Z. 2014. Decolorization of Palm Oil Mill Effluent using Growing Cultures of Curvularia clavata. Environmental Science and Environmental Research. 21(6): 4397-4408.

DOI: https//doi.org/10.1007/s11356-013-2350-1.

Chaijak, P., Lertworapreecha, M., Sukkasem, C. 2017. Decolorization and Phenol Removal of Palm Oil Mill Effluent by Termite-associated Yeast. International Journal of Biotechnology and Bioengineering. 11(1): 29-32.

DOI: https://doi.org/10.5281/zenodo.1340050.

Subowo, Y. B. 2017. The Utilization of Ink Cap Mushroom (Coprinus cinereus) on Palm Oil Mill Effluent Degradation. Journal of Biological Research. 22(2): 61-67.

DOI: https//doi.org/10.23869/64.

Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., Oh, S. E. 2015. Microbial Fuel Cell as New Technology for Bioelectricity Generation: A Review. Alexandria Engineering Journal. 54: 745-756.

DOI: https://doi.org/10.1016/j.aej.2015.03.031.

Cheng, D. L., Ngo, H. H., Guo, W. S., Chang, S. W., Nguyen, D. D., Liu, Y. W., Liu, Y., Deng, L. J., Chen, Z. 2012. Evaluation of a Continuous Flow Microbial Fuel Cell for Treating Synthetic Swine Wastewater Containing Antibiotics. Science of the Total Environment. 756: 1-41.

DOI: https://doi.org/10.1016/j.scitotenv.2020.144133.

AlSayed, A., Soliman, M., Eldyasti, A. 2020. Microbial Fuel Cells for Municipal Wastewater Treatment: From Technology Fundamentals to Full-scale Development. Renewable & Sustainable Energy Reviews. 134: 1-14.

DOI: https://doi.org/10.1016/j.rser.2020.110367.

Wu, L. C., Chen, C. Y., Lin, T. K., Su, Y. Y., Chung, Y. C. 2020. Highly Efficient Removal of Victoria Blue R and Bioelectricity Generation from Textile Wastewater Using a Novel Combined Dual Microbial Fuel Cell System. Chemosphere. 258: 1-10.

DOI: https://doi.org/10.1016/j.chemosphere.2020.127326.

Azreen, I., Zahrim, A. Y., Chong, S. H., Ng, S. W. 2016. Estimation of Melanoidin Concentration in Palm Oil Milled Effluent Ponding System and Its Treatment Using Calcium Lactate. IOP Conference Series: Materials Science and Engineering. 206: 1-7.

DOI: https://doi.org/10.1088/1757-899X/206/1/012078.

Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S. Sato, C. 2018. Enhancing Electricity Generation using a Laccase-based Microbial Fuel Cell with Yeast Galactomyces Reessii on the Cathode. Journal of Microbiology and Biotechnology. 28(8): 1360-1366.

DOI: https://doi.org/ 10.4014/jmb.1803.03015.

Rao, A., Ramakrishna, N., Arunachalam, S., Sathiavelu, M. 2019. Isolation, Screening and Optimization of Laccase Producing Endophytic Fungi from Euphorbia milii. Arabian Journal for Science and Engineering. 44: 51-64.

DOI: https://doi.org/10.1007/s13369-018-3431-8.

Ali, W. B., Chaduli, D., Navarro, D., Lechat, C., Turbe-Doan, A., Bertrand, E., Faulds, B., Sciara, G., Lesage-Meessen, L., Record, E., Mechichi, T. 2020. Screening of Five Marine-derived Fungal Strains for Their Potential to Produce Oxidases with Laccase Activities Suitable for Biotechnological Applications. BMC Biotechnology. 20: 1-13.

DOI: https://doi.org/10.1186/s12896-020-00617-y.

Kang, O. J. 2016. Evaluation of Melanoidins Formed from Black Garlic After Different Thermal Processing Steps. Preventive Nutrition and Food Science. 21(4): 398-405.

DOI: https://dx.doi.org/10.3746%2Fpnf.2016.21.4.398.

Omar, A. A., Mahgoub, S. Sakama, A., Likotrafiti, E., Rhoades, J., Christakis, C., Samaras, P. 2020. Evaluation of Lactobacillus Kefiri and Manganese Peroxidase-Producing Bacteria for Decolorization of Melanoidins and Reduction of Chemical Oxygen Demand. Water and Environment Journal. 1: 1-23.

DOI: https://doi.org/10.1111/wej.12663.

Published

2022-07-26

How to Cite

Pimprapa, C., Purimprach, S. ., & Patcharida, W. . (2022). A NEW REPORT ON USING A LACCASE PRODUCING YEAST FOR MELANOIDIN DEGRADATION AND ELECTRICITY GENERATION BY MICROBIAL FUEL CELL. Jurnal Teknologi, 84(5). https://doi.org/10.11113/jurnalteknologi.v84.17875

Issue

Section

Science and Engineering