COMPUTATIONAL STUDIES OF POTENTIAL EBOLA VP40 INHIBITORS USING BIOACTIVE COMPOUNDS FROM MEDICINAL PLANTS OF MALAYSIA

Authors

  • Khairul Bariyyah Abd Halim ᵃDepartment of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia ᵇResearch Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
  • Noor Atikah Samin Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
  • Mohamad Ariff Mohamad Yussof Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17954

Keywords:

EBOV, Bioactive compounds, Apigenin, Epiexcelsin, Kaempferol, Molecular Dynamic Simulation, MM-PBSA

Abstract

Ebola virus (EBOV) belongs to Filoviridae family, a deadly virus that can cause severe viral haemorrhagic fevers (VHF) with a high fatality rate between 25 to 90 percent. Amongst EBOV proteins, the EBOV matrix protein VP40 is crucial in facilitating the transcription of the viral gene in the early stage of infection. To date, there is no cure for EBOV and available chemical drugs were known to cause severe side effects. It is known that bioactive compounds from natural products can potentially combat this viral disease with fewer side effects. Therefore, this study aims to screen 15 bioactive compounds of medicinal plants from Malaysia. These compounds were docked against the RNA active site (Phe125 and Arg134) on VP40 matrix protein using AutoDock Vina. The ADMET properties and the toxicity class of the compounds were predicted computationally, and the compounds with good oral bioavailability were chosen for docking simulations. The top three docked compounds namely apigenin, epiexcelsin and kaempferol have a binding affinity of -4.6, -4.4 and -4.3 kJ/mol respectively. Our MD simulation study showed that epiexcelsin is the best candidate among the three selected compounds. Binding free energy calculation via molecular-mechanics Poisson Boltzmann surface area (MM-PBSA) method showed that epiexcelsin has the lowest binding free energy of -56.503 kJ/mol compared to apigenin (-40.344 kJ/mol) and kaemferol (-27.329 kJ/mol).  Our results suggest that epiexcelsin from local herbal plants can potentially be explored as a good candidate for further development of EBOV inhibitor targeting VP40.

References

WHO. 2014. Geneva (CH): WHO . Geneva (CH): World Health Organization [cited 2014 Sep 2]. World Health Organization Statement on the Meeting of the International Health Regulations Emergency Committee Regarding the 2014 Ebola Outbreak in West Africa. https://www.who.int/news/item/08-08-2014-statement-on-the-1st-meeting-of-the-ihr-emergency-committee-on-the-2014-ebola-outbreak-in-west-africa.

Hasan, S., Ahmad, S. A., Masood, R., & Saeed, S. 2019. Ebola Virus: A Global Public Health Menace: A Narrative Review. Journal of Family Medicine and Primary Care. 8(7): 2189-2201. https://doi.org/10.4103/jfmpc.jfmpc_297_19.

Wan Mohamed Noor, W. N., Sandhu, S. S., Ahmad Mahir, H. M., Kurup, D., Rusli, N., Saat, Z., Chong, C. K., Sulaiman, L. H., & Abdullah, N. H. 2014. Responding to the Potential of Ebola Virus Disease (EVD) Importation into Malaysia. The Malaysian Journal of Medical Sciences : MJMS. 21(6): 3-8.

Martínez, M. J., Salim, A. M., Hurtado, J. C., & Kilgore, P. E. 2015. Ebola Virus Infection: Overview and Update on Prevention and Treatment. Infectious Diseases and Therapy. https://doi.org/10.1007/s40121-015-0079-5.

World Health Organization. 2016. Ebola Virus Disease. Retrieved from http://www.who.int.

Warren, T. K., Warfield, K. L., Wells, J., Enterlein, S., Smith, M., Ruthel, G., … Bavari, S. 2010. Antiviral Activity of a Small-molecule Inhibitor of Filovirus Infection. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.01315-09.

Gebre, Y., Gebre, T., & Peters, A. 2014. The Ebola Virus: A Review of Progress and Development in Research. Asian Pacific Journal of Tropical Biomedicine. 4(12): 928-936. https://doi.org/10.12980/APJTB.4.201414B419.

Stahelin, R. V. 2014. Could the Ebola Virus Matrix Protein VP40 be a Drug Target? Expert Opinion on Therapeutic Targets. 18(2): 115-120. https://doi.org/10.1517/14728222.2014.863877.

Passi, D., Sharma, S., Dutta, S. R., Dudeja, P., & Sharma, V. 2015. Ebola Virus Disease (The Killer Virus): Another Threat to Humans and Bioterrorism: Brief Review and Recent Updates. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2015/13062.6100.

Hoenen, T., Groseth, A., Falzarano, D., & Feldmann, H. 2006. Ebola Virus: Unravelling Pathogenesis to Combat a Deadly Disease. Trends in Molecular Medicine. https://doi.org/10.1016/j.molmed.2006.03.006.

Bavari, S., Bosio, C. M., Wiegand, E., Ruthel, G., Will, A. B., Geisbert, T. W., … Aman, M. J. 2002. Lipid Raft Microdomains A Gateway for Compartmentalized Trafficking of Ebola and Marburg Viruses. The Journal of Experimental Medicine. https://doi.org/10.1084/jem.20011500.

Gomis-Rüth, F. X., Dessen, A., Timmins, J., Bracher, A., Kolesnikowa, L., Becker, S., … Weissenhorn, W. 2003. The Matrix Protein VP40 from Ebola Virus Octamerizes into Pore-Like Structures with Specific RNA Binding Properties. Structure. 11(4): 423-433. https://doi.org/10.1016/S0969-2126(03)00050-9.

Hoenen, T., Volchkov, V., Kolesnikova, L., Mittler, E., Timmins, J., Ottmann, M., … Weissenhorn, W. 2005. VP40 Octamers are Essential for Ebola Virus Replication. Journal of Virology. 79(3): 1898-1905. https://doi.org/10.1128/JVI.79.3.1898-1905.2005.

Bornholdt, Z. A., Noda, T., Abelson, D. M., Halfmann, P., Wood, M. R., Kawaoka, Y., & Saphire, E. O. 2013. Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle. Cell. 154(4): 763-774. https://doi.org/10.1016/j.cell.2013.07.015.

Shurtleff, A. C., Whitehouse, C. A., Ward, M. D., Cazares, L. H., & Bavari, S. 2015. Pre-symptomatic Diagnosis and Treatment of Filovirus Diseases. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.00108.

Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J. B., … Kobinger, G. P. 2014. Reversion of Advanced Ebola Virus Disease in Nonhuman Primates with ZMapp. Nature. 514(7520): 47-53. https://doi.org/10.1038/nature13777.

Furuta, Y., Takahashi, K., Shiraki, K., Sakamoto, K., Smee, D. F., Barnard, D. L., … Morrey, J. D. 2009. T-705 (Favipiravir) and Related Compounds: Novel Broad-spectrum Inhibitors of RNA Viral Infections. Antiviral Research. https://doi.org/10.1016/j.antiviral.2009.02.198.

Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., … Carroll, M. W. 2016. Real-time, Portable Genome Sequencing for Ebola Surveillance. Nature. https://doi.org/10.1038/nature16996.

Chattopadhyay, D., & Naik, T. 2007. Antivirals of Ethnomedicinal Origin: Structure-activity Relationship and Scope. Mini-Reviews in Medicinal.

DeLano, W. L. 2002. Pymol: An Open-source Molecular Graphics Tool. CCP4 Newsletter on Protein Crystallography. 40: 82-92.

Balmith, M., & Soliman, M. E. S. 2017. VP40 of the Ebola Virus as a Target for EboV Therapy: Comprehensive Conformational and Inhibitor Binding Landscape from Accelerated Molecular Dynamics. Cell Biochemistry and Biophysics. 75(1): 65-78. https://doi.org/10.1007/s12013-017-0783-8.

M Alam El-Din, H., A Loutfy, S., Fathy, N., H Elberry, M., M Mayla, A., Kassem, S., & Naqvi, A. 2016. Molecular Docking based Screening of Compounds against VP40 from Ebola Virus. Bioinformation. 12(3): 192-196. https://doi.org/10.6026/97320630012192.

Karthick, V., Nagasundaram, N., Doss, C. G. P., Chakraborty, C., Siva, R., Lu, A., … Zhu, H. 2016. Virtual Screening of the Inhibitors Targeting at the Viral Protein 40 of Ebola Virus. Infectious Diseases of Poverty. 5(12): 1-10. https://doi.org/10.1186/s40249-016-0105-1.

Mirza, M. U., & Ikram, N. 2016. Integrated Computational Approach for Virtual Hit Identification against Ebola viral Proteins VP35 and VP40. International Journal of Molecular Sciences. 17(11): 1-31. https://doi.org/10.3390/ijms17111748.

Raj, U., & Varadwaj, P. K. 2016. Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In Silico Discovery using Virtual Screening and Molecular Docking Studies. Interdisciplinary Sciences: Computational Life Sciences. 8(2): 132-141. https://doi.org/10.1007/s12539-015-0109-8.

Setlur, A. S., Naik, S. Y., & Skariyachan, S. 2017. Herbal Lead as Ideal Bioactive Compounds against Probable Drug Targets of Ebola Virus in Comparison with Known Chemical Analogue: A Computational Drug Discovery Perspective. Interdisciplinary Sciences: Computational Life Sciences. 9(2): 254-277. https://doi.org/10.1007/s12539-016-0149-8.

Shah, R., Panda, P. K., Patel, P., & Panchal, H. 2015. Pharmacophore based Virtual Screening and Molecular Docking Studies of Inherited Compounds againts Ebola Virus Receptor Proteins. World Journal of Pharmacy and Pharmaceutical Sciences. 4(05): 1268-1282.

Silva, L. P., Vanzile, M., Bavari, S., Aman, J. M. J., & Schriemer, D. C. 2012. Assembly of Ebola Virus Matrix Protein VP40 is Regulated by Latch-like Properties of N and C Terminal Tails. PLoS ONE. 7(7): e39978. https://doi.org/10.1371/journal.pone.0039978.

Tamilvanan, T., & Hopper, W. 2013. High-throughput Virtual Screening and Docking Studies of Matrix Protein vp40 of Ebola Virus. Bioinformation. https://doi.org/10.6026/97320630009286.

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. 2009. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry. 30(16): 2785-2791. https://doi.org/10.1002/jcc.21256.AutoDock4.

Petrescu, A. M., Paunescu, V., & Ilia, G. 2019. The Antiviral Activity and Cytotoxicity of 15 Natural Phenolic Compounds with Previously Demonstrated Antifungal Activity. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes. https://doi.org/10.1080/03601234.2019.1574176.

Trott, O., & Olson, A. J. 2010. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry. https://doi.org/10.1002/jcc.21334.

Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. 2018. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Research. https://doi.org/10.1093/nar/gky318.

Daina, A., Michielin, O., & Zoete, V. 2017. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports. https://doi.org/10.1038/srep42717.

James, M., Murtola, T., Schulz, R., Smith, J. C., Hess, B., & Lindahl, E. 2015. GROMACS : High Performance Molecular Simulations through Multi-level Parallelism from Laptops to Supercomputers. 1-7. https://doi.org/10.1016/j.softx.2015.06.001.

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. 2005. GROMACS: Fast, Flexible, and Free. Journal of Computational Chemistry. 26(16): 1701-1718. https://doi.org/10.1002/jcc.20291.

Kumari, R., Kumar, R., & Lynn, A. 2014. g_mmpbsa -A GROMACS Tool for High-throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling. 54(7): 1951-1962. https://doi.org/10.1021/ci500020m.

Lipinski, C. A. 2000. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability. Journal of Pharmocological and Toxicological Methods. 44: 235-249. https://doi.org/10.1016/S1056-8719(00)00107-6.

Lipinski, C. A. 2004. Lead- and Drug-like Compounds: The Rule-of-five Revolution. Drug Discovery Today: Technologies. 1(4): 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007.

Baell, J. B., & Holloway, G. A. 2010. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. Journal of Medicinal Chemistry. 53(7): 2719-2740. https://doi.org/10.1021/jm901137j.

Karthick, V., Nagasundaram, N., Doss, C. G., Chakraborty, C., Siva, R., Lu, A., Zhang, G., & Zhu, H. 2016. Virtual Screening of the Inhibitors Targeting at the Viral Protein 40 of Ebola Virus. Infectious Diseases of Poverty. 5: 12. https://doi.org/10.1186/s40249-016-0105-1.

Downloads

Published

2022-05-30

How to Cite

Abd Halim, K. B., Samin, N. A. ., & Mohamad Yussof, M. A. . (2022). COMPUTATIONAL STUDIES OF POTENTIAL EBOLA VP40 INHIBITORS USING BIOACTIVE COMPOUNDS FROM MEDICINAL PLANTS OF MALAYSIA. Jurnal Teknologi, 84(4), 183-190. https://doi.org/10.11113/jurnalteknologi.v84.17954

Issue

Section

Science and Engineering