EVALUATING THE EFFECT OF PYROLIGNEOUS EXTRACT AS NATURAL ANTIMICROBIAL AGENT UNDER DIFFERENT CONTACT TIMES

Authors

  • Chee Loong Teo Department of Research and Development, Agri Season Sdn. Bhd. No 30, Lot 2718 Jalan Kejayaan 1, Batu 24, 81900 Kota Tinggi, Johor, Malaysia https://orcid.org/0000-0003-4157-4556

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17985

Keywords:

Pyroligneous extract, Minimum duration of killing (MDK), Antimicrobial agent, Time-kill methods, Rhizophora apiculate

Abstract

Pyroligneous extract is a by-product of the charcoal making process. Pyroligneous extract application becomes a potential natural active ingredient to contribute in biocosmetics, bioprocess, and biopharmaceutical industry. In this study, five human harmful microorganisms which related urinary tract infection were selected: Candida albicans 10231, Escherichia coli 8739, Enterococcus faecalis 19433, Proteus vulgaris 33420 and Klebsiella pneumoniae 13883. Time-kill kinetics assay method was used to study natural pyroligneous acid as an antimicrobial agent to determine bacteriostatic and bactericidal activity of the minimum duration of killing (MDK) with a variety of contact time (0 – 240 minutes). From the result is showed that pyroligneous extract reached 100% of reduction effects with different MDK: E.coli (8739) at 2 minutes, P.vulgaris (33420) at 4 minutes, K.pneumoniae (13883)  at 2 minutes, C.albicans (10231) at 2 minutes and E. faecalis (19433) at 240 minutes. For bioprocess kinetics analysis, the highest specific reduction rate and halve rate according to contact time: E.coli at 2 minutes (3.5450, 5.1144), P.vulgaris at 2 minutes (3.7192, 5.3657), K.pneumoniae  at 2 minutes (3.5015, 5.0516), C.albicans at 2 minutes (3.4947. 5.0417) and E.faecalis at 4 minutes (3.8005, 5.4829). The results of this research provide convincing evidence to pyroligneous extract as an antimicrobial agent.

References

Gilbert, B., Robbins, P., Livornese, Jr. L. L. 2009. Use of Antibacterial Agents in Renal Failure. Infect. Dis. Clin. North. Am. 23(4): 899-924 viii.

Wasim, S. E. N., Derrick, S., Mohamad, M., Islam, M. G. 2020. Treatment of Recurrent Urinary Tract Infections in Anuric Hemodialysis Patient, Do We Really Need Antimicrobial Urinary Concentration? ID Cases. 20: e00748.

Hoberman, A., Chao, H. P., Keller, D. M., Hickey, R., Davis, H. W., Ellis, D. 1993. Prevalence of Urinary Tract Infection in Febrile Infants. J. Pediatr. 123: 17-23.

Nuutinen, M., Uhari, M. 2001. Recurrence and Follow-up after Urinary Tract Infection Under the Age of 1 Year. Pediatr. Nephrol. 16: 69-72.

Copp, H. L., Shapiro, D. J., Hersh, A. L. 2011. National Ambulatory Antibiotic Prescribing Patterns for Pediatric Urinary Tract Infection, 1998-2007. Pediatrics. 127: 1027-33.

Millner, R., Becknell, B. 2019. Urinary Tract Infections. Pediatr. Clin. North Am. 66: 1-13.

Abdelrhman, A. Z., Mohamed, Y., Tung, P. 2020. Acinetobacter Junii as a Rare Pathogen of Urinary Tract Infection. Urology Case Reports. 32: 101209.

Lee, C. C., Lee, C. H., Hong, M. Y., Hsieh, C. C., Tang, H. J., Ko, W. C. 2018. Propensity-matched Analysis of the Impact of Extended-spectrum β-lactamase Production on Adults with Community-onset Escherichia coli, Klebsiella Species, and Proteus Mirabilis Bacteremia. J. Microbiol. Immunol. Infect. 51: 519-526.

Jean, S. S., Lee, W. S., Lam, C., Hsu, C. W., Chen, R. J., Hsueh, P. R. 2015. Carbapenemase Producing Gram-Negative Bacteria: Current Epidemics, Antimicrobial Susceptibility and Treatment Options. Future Microbiol. 10: 407-25.

Chen, G. J., Pan, S. C., Foo, J., Morel, C., Chen, W. T., Wang, J. T. 2019. Comparing Ceftolozane/ Tazobactam Versus Piperacillin/ Tazobactam as Empiric Therapy for Complicated Urinary Tract Infection in Taiwan: A Cost-utility Model Focusing on Gram-negative Bacteria. J. Microbiol. Immunol. Infect. 52: 807-15.

Wennerstrom, M., Hansson, S., Jodal, U., Stokland, E. 2000. Primary and Acquired Renal Scarring in Boys and Girls with Urinary Tract Infection. J. Pediatr. 136: 30-4.

Bandow, J. E., Brötz, H., Leichert, L. I. O., Labischinski, H., Hecker, M. 2003. Proteomic Approach to Understanding Antibiotic Action. Antimicrob. Agents Chemothe. 47(3): 948-955.

Dadashi, M., Eslami, G., Goudarzi, H., Fallah, F., Dabiri, H., Hashemi, A., Ardeshiri, N., Nasiri, M. J. 2015. Evaluation of Antibacterial Effects of Cinnamon Extract and Essence on Bacteria Isolated from Patients with Urinary Tract Infection. Int. J. Mole. Clinic. Microbio. 5 (1): 523-527.

Hertogs, K., de Béthune, M.cP., Miller, V., Ivens, T., Schel, P., Van Cauwenberge, A., Peeters, F. 1998. A Rapid Method for Simultaneous Detection of Phenotypic Resistance to Inhibitors of Protease and Reverse Transcriptase in Recombinant Human Immunodeficiency Virus Type 1 Isolates from Patients Treated with Antiretroviral Drugs. Antimicrob. Agents Chemothe. 42(2): 269-276.

Davies, J., Davies, D. 2010. Origins and Evolution of Antibiotic Resistance. Microbio. Mole. Bio. Rev. 74(3): 417-433.

Ghimire, B. K., Seong, E. S., Yub, C. Y., Kima, S. H., Chung, I. M. 2017. Evaluation of Phenolic Compounds and Antimicrobial Activities in Transgenic Codonopsis Lanceolata Plants via Overexpression of the γ-tocopherol Methyltransferase (γ-tmt) Gene. South African Journal of Botany. 109: 25-33.

Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A. L., Haroutounian, S. A. 2012. Grape Stem Extracts: Polyphenolic Content and Assessment of their In Vitro Antioxidant Properties. LWT – Food Sci. Technol. 48: 316-322. https://doi.org/ 10.1016/j.lwt.2012.04.006.

Gouvinhas, I., Pinto, Rosa, Santos, Rafaela, Saavedra, Maria, J., Barros, Ana, I. 2020. Enhanced Phytochemical Composition and Biological Activities of Grape (Vitis vinifera L.) Stems Growing in Low Altitude Regions. Sci. Hortic. 265: 109248. https://doi.org/10.1016/j.scienta.2020.109248.

Ramos, S. 2007. Effects of Dietary Flavonoids on Apoptotic Pathways Related to Cancer Chemoprevention. J. Nutr. Biochem. 18: 427-442.

Ahmed, A. T., Mahmoud, A. E., Ahmed, I. I., Shaaban, H. M., 2018. Application of Quercus Infectoria Extract as a Natural Antimicrobial Agent for Chicken Egg Decontamination. Revista Argentina De Microbiologia. 50(4): 391-397.

Bang, L. M., Buntting, C., Molan, P. 2003. The Effect of Dilution on the Rate of Hydrogen Peroxide Production in Honey and Its Implications for Wound Healing. J. Alternative Compl. Med. 9(2): 267-273.

Lee, S. H., H'ng, P. S., Lee, A. N., Sajap, A. S., Tey, B. T., Salmiah, U. 2010. Production of Pyroligneous Acid from Lignocellulosic Biomass and Their Effectiveness against Biological Attacks. J. Applied Sci. 10: 2440-2446.

Loo, A. Y., Jain, K., Darah, I. 2008. Antioxidant Activity of Compounds Isolated from the Pyroligneous Acid, Rhizophora apiculata. Food Chem. 107: 1151-1160.

Vitt, S. M., Himelbloom, B. H., Crapo, C. A. 2001. Inhibition of Listeria Inocula and L. Monocytogenes in a Laboratory Medium and Cold-smoked Salmon Containing Liquid Smoke. J. Food Safety. 2: 111-125.

Suzuki, T., Doi, S., Yamakawa, M., Yamamoto, K., Watanabe, T., Funaki, M. 1997. Recovery of Wood Preservatives from Wood Pyrolysis Tar by Solvent Extraction. Holzforschung. 51: 214-218.

Lee, S. H., H`ng, P. S., Chow, M. J., Sajap, A. S., Tey, B. T., Salmiah, U., Sun, Y. L. 2011. Effectiveness of Pyroligneous Acids from Vapour Released in Charcoal Industry Against Biodegradable Agent under Laboratory Condition. J. of Applied Sci. 11 (24): 3848-3853.

Sebestyen, T. T., Carlos A. 2022. Industrial Production of Activated Carbon using Circular Bioeconomy Principles: Case Study from a Romanian Company Grande. Cleaner Engineering and Technology. 7: 100443

Ibrahim, D., Kassim, J., Lim, S. H., Rusli, W. 2014. Evaluation of Antibacterial Effects of Rhizophora Apiculata Pyroligneous Acidon Pathogenic Bacteria. Malays J Microbiol. 10(3): 197-204.

Wu, Q., Zhang, S., Hou, B. 2015. Study on the Preparation of Wood Vinegar from Biomass Residues by Carbonization Process. Bioresour Technol. 179: 98-103.

Grewal, A., Abbey, L., Gunupuru, L. R. 2018. Production, Prospects and Potential Application of Pyroligneous Acid in Agriculture. J. Anal. Appl. Pyrolysis. 135: 152-159.

Crepier, J., Le Masle, A., Charon, N., Albrieux, F., Duchene, P., Heinisch, S. 2018. Ultra-high Performance Supercritical Fluid Chromatography Hyphenated to Atmospheric Pressure Chemical Ionization High Resolution Mass Spectrometry for the Characterization of Fast Pyrolysis Bio-oils. J. Chromatogr. B. 1086: 38-46.

Sameshima, K., Sasaki, M., Sameshima, I. 2002. Fundamental Evaluation on Termiticidal Activity of Various Vinegar Liquids from Charcoal Making. Proceedings of the 4th International Wood Science Symposium, September 2-5, 2002, Serpong, Indonesia. 134-138.

Yatagai, M., Nishimoto, M., Hori, K., Ohira, T., Shibata, A. 2002. Termiticidal Activity of Wood Vinegar, Its Components and Their Homologues. J. Wood Sci. 48: 338-342.

Juliana, L. S. d. S., Victoria, B. d. S. G., Angela, D. C., Rafael, G. L. 2018. Antimicrobial Potential of Pyroligneous Extracts – A Systematic Review and Technological Prospecting. Brazilian J. of Microbiol. 49s: 128-139.

Hwang, Y. H., Matsushita, Y. I., Sugamoto, K., Matsui, T. 2005. Antimicrobial Effect of the Wood Vinegar from Cryptomer Iajaponica Sapwood on Plant Pathogenic Microorganisms. J. Microbiol. Biotechnol. 15(5): 1106-1109.

Bruce, A., Highley, T. L. 1991. Control of Growth of Wood Decay Basidiomycetes by Trichoderma spp. and other Potentially Antagonistic Fungi. Forest Prod. J. 41: 63-67.

Nakai, T., Kartal, S.N., Hata, T., Imamura, Y. 2007. Chemical Characterization of Pyrolysis Liquids of Wood-based Composites and Evaluation of Their Bio-efficiency. Build. Environ. 42: 1236-1241.

Pfaller, M. A., Sheehan, D. J., Rex, J. H. 2004. Determination of Fungicidal Activities against Yeasts and Molds: Lessons Learned from Bactericidal Testing and the Need for Standardization. Clin. Microbiol. Rev. 17: 268-280.

Teo, C. L. 2022. Antimicrobial Study of Pyroligneous Extract from Rhizophora Apiculate against Urinary Tract Pathogens. Jurnal Teknologi. 84(1): 49-55

Tendolkar, P. M., Baghdayan, A. S., Shankar, N. 2003. Pathogenic Enterococci New Developments in the 21st Century. Cell. Mol. Life Sci. 60: 2622-2636.

Konaté, K., Mavoungou, J. F., Lepengué, A. N. 2012. Antibacterial activity against β-lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) Determination, Ann. Clin. Microbiol. Antimicrob. 11: 18.

Shahidi, F., Ho, C. T. 2005. Phenolics in Food and Natural Health Products: An Overview. Phenolic Compounds in Foods and Natural Health Products. ACS Symposium Series 909, American Chemical Society, Washington, DC. 1-8.

Garrote, G., Cruz, J. M., Moure, A., Dominguez, H., Parajo, J. C. 2004. Antioxidant Activity of Byproducts from the Hydrolytic Processing of Selected Lignocellulosic Materials. Trends Food Sci. Technol. 15: 191-200.

Darah, I., Jain, K., Lim, S. H. Wendy, R. 2013. Efficacy of Pyroligneous Acid from Rhizophora apiculata on Pathogenic Candida albicans. Journal of Applied Pharmaceutical Science. 3(07): 7-13.

Davidson, P. M., Taylor. T. M. 2007. Chemical Preservatives and Natural Antimicrobial Compounds. Food Microbiology: Fundamentals and Frontiers. 3rd ed. P. M. Doyle and I. R. Beuchat, ed. ASM Press, Washington, DC. 713-745.

Coutinho, H. D. M., Costa, J. G. M., Lima, E. O., Falcao, S. V. S., Siqueira, J. J. P. 2008. Enhancement of the Antibiotic Activity against a Multi-resistant Escherichia coli by Mentha arvensis L. and Chlorpromazine. Chemotherapy. 54: 328-330.

Lu, X., Jiang, J., He, J., Sun, K., Sun, Y., 2019. Effect of Pyrolysis Temperature on the Characteristics of Wood Vinegar Derived from Chinese Fir Waste: A Comprehensive Study on Its Growth Regulation Performance and Mechanism. ACS Omega 4. 19054-19062.

Hou, X., Qiu, L., Luo, S., Kang, K., Zhu, M., Yao, Y. 2018. Chemical Constituents and Antimicrobial Activity of Wood Vinegars at Different Pyrolysis Temperature Ranges Obtained from Eucommia ulmoides Olivers Branches. RSC Adv. 8: 40941-40949.

Li, Z., Wu, L., Sun, S., Gao, J., Zhang, H., Zhang, Z., Wang, Z., 2019b. Disinfection and Removal Performance for Escherichia Coli, Toxic Heavy Metals and Arsenic by Wood Vinegar-Modified Zeolite. Ecotoxicol. Environ. Saf. 174: 129-136.

Montazeri, N., Oliveira, A. C. M., Himelbloom, B. H., Leigh, M. B., Crapo, C. A. 2013. Chemical Characterization of Commercial Liquid Smoke Products. Food Sci. Nutr. 1: 102-115.

Cetin, H., Newman, M. C. 2015. Antimicrobial Efficacy of Plant Phenolic Compounds against Salmonella and Escherichia Coli. Food Bioscience. 11: 8-16.

Brauner, A., Fridman, O., Gefen, O., Balaban, N. Q. 2016. Distinguishing between Resistance, Tolerance and Persistence to Antibiotic Treatment. Nat. Rev. Microbiol. 14: 320-330. Doi: 10.1038/nrmicro.2016.34.

Elo, H., Kuure, M., Pelttari, E. 2015. Correlation of the Antimicrobial Activity of Salicylaldehydes with Broadening of the NMR Signal of the Hydroxyl Proton. Possible Involvement of Proton Exchange Processes in the Antimicrobial Activity. European J. of Medicinal Chemistry. 92: 750-753.

Stefanovic, O., Radojevic, I., Vasic, S., Comic, L. 2012. Antibacterial Activity of Naturally Occurring Compounds from Selected Plants. In: Bobbarala, V. (Ed.). Antimicrobial Agents. InTech. http://dx.doi.org/10.5772/33059.

Campos, F. M., Couto, J. A., Figueiredo, A. R., Toth, IV, Rangel, A. O. S. S., Hogg, T. A. 2009. Cell Membrane Damage Induced by Phenolic Acids on Wine Lactic Acid Bacteria. Int. J. Food Microbiol. 135: 144-51.

Mirzoeva, O. K., Grishanin, R. N., Calder, P. C. 1997. Antimicrobial Action of Propolis and Some of Its Components: the Effects on Growth, Membrane Potential and Motility of Bacteria. Microb. Research. 152: 239-246.

Mishra, K., Basu, S., Roychoudhury, S., Kumar, P. 2010. Liver Abscess in Children: An Overview. World Journal of Pediatrics. 6: 210-216.

Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., Balaban, N. Q. 2014. Optimization of Lag Time Underlies Antibiotic Tolerance in Evolved Bacterial Populations. Nature. 513: 418-421. Doi: 10.1038/nature13469.

Kwon, Y. I., Apostolidis, E., Labbe, R. G., Shetty, K. 2008. Inhibition of Staphylococcus Aureus by Phenolic Phytochemicals of Selected Clonal Herbs Species of Lamiaceae Family and Likely Mode of Action through Proline Oxidation. Food Biotechnology. 21: 71-89.

Lacombe, A., Wu, V. C. H., Tyler, S., Edwards, K. 2010. Antimicrobial Action of the American Cranberry Constituents; Phenolics, Anthocyanins, and Organic Acids, against Escherichia coli O157:H7. International Journal of Food Microbiology. 139: 102-107.

Hyldgaard, M., Mygind, T., Meyer, R. L. 2012. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Frontiers in Microbiol. 3: 12.

Neu, H. C., Gootz, T. D. 1996. Antimicrobial Chemotherapy. In: Baron S. (eds.). Medical Microbiology. Galveston (TX): University of Texas Medical Branch at Galveston.

Gopala-Rao, T. V., Sen, S. K., Samal, A., Satpathy, S. 2010. Nystatin Induced Changes in Growth, Viability and Amino Acid Influx of Yeast Saccharomyces cerevisiae. Int J Chem Res. 2(1): 8-17.

Chang, Y. C., Tai, K. W., Huang, F. M., Huang, M. F. 2000. Cytotoxic and Nongenotoxic Effects of Phenolic Compounds in Human Pulp Cell Cultures. J. Endod. 26: 440-443.

Tsiotou, A.G., Sakorafas, G.H., Anagnostopoulos, G., Bramis, J., 2005. Septic shock; current pathogenetic concepts from a clinical perspective. Medical Science Monitor 11, RA76–RA85.

Kennedy, W.A., Laurier, C., Gautrin, D., Ghezzo, H., Paré, M., Malo, J.L., Contandriopoulos, A.P., 2000. Occurrence and risk factors of oral candidiasis treated with oral antifungals in seniors using inhaled steroids. J. of Clinical Epidemiology., 53, 696–701.

Martins, N., Ferreira, I.C.F.R., Barros, L., Silva, S., Henriques, M., 2014. Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia, 177(5-6), 223–240.

Vazquez, G. D., Perusquia, O.A.M., Hundeiker, M., Bonifaz, A., 2013. Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis. J. of the German Society of Dermatology., 11(5), 381–395.

Mounyr, B., Moulay, S., Saad, K.I., 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. of Pharmaceutical Analysis., 6, 71–79.

Oramahi, H.A., Yoshimura, T., Diba, F., Setyawati, D., Nurhaida, 2018. Antifungal and antitermitic activities of wood vinegar from oil palm trunk, J. Wood Sci. 64, 311–317.

Ratanapisit, J., Apiraksakul, S., Rerngnarong, A, Chungsiriporn, J., Bunyakarn, C., 2009. Preliminary evaluation of production and characterization of wood vinegar from rubber wood. Songklanakarin J. Sci. Technol., 31, 343–349.

Yang, J.F., Yang, C.H., Liang, M.T., Gao, Z.J., Wu, Y.W., Chuang, L.Y., 2016. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules. 21: 1150.

Vijayarathna, S., Zakaria, Z., Chen, Y., Latha, L.Y., Kanwar, J. R., Sasidharan, S. 2012. The Antimicrobial Efficacy of Elaeis Guineensis: Characterization, In Vitro and In Vivo Studies. Molecules. 17(5): 4860-4877.

Roy, P., Amdekar, S., Kumar, A., Singh, R., Sharma, P., Singh, V. 2012. In Vivo Antioxidative Property, Antimicrobial and Wound Healing Activity of Flower Extracts of Pyrostegia venusta (Ker Gawl) Miers. J. of Ethnopharmacology. 140(1): 186-192.

Araujo, M. G. F., Pacıfico, M., Vilegas, W. 2013. Evaluation of Syngonanthus nitens (Bong.) Ruhl. Extract as Antifungal and in Treatment of Vulvovaginal Candidiasis. Medical Mycology. 51(7): 673-682.

Jothy, S. L., Zakariah, Z., Chen, Y., Sasidharan, S. 2012. In vitro, In Situ and In Vivo Studies on the Anticandidal Activity of Cassia Fistula Seed Extract. Molecules. 17(6): 6997-7009.

Published

2022-07-26

How to Cite

Teo , C. L. (2022). EVALUATING THE EFFECT OF PYROLIGNEOUS EXTRACT AS NATURAL ANTIMICROBIAL AGENT UNDER DIFFERENT CONTACT TIMES. Jurnal Teknologi, 84(5). https://doi.org/10.11113/jurnalteknologi.v84.17985

Issue

Section

Science and Engineering