PHOTOACOUSTIC PHASE ANGLE FOR NONINVASIVE MONITORING OF MICROCIRCULATORY CHANGE IN HUMAN SKIN: A PRELIMINARY INVESTIGATION

Authors

  • Hui Ling Chua PHOTOACOUSTIC PHASE ANGLE FOR NONINVASIVE MONITORING OF MICROCIRCULATORY CHANGE IN HUMAN SKIN: A PRELIMINARY INVESTIGATION https://orcid.org/0000-0003-4843-2075
  • Audrey Huong Department of Electronic Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, Malaysia https://orcid.org/0000-0002-4505-5860

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18005

Keywords:

Photoacoustic, phase angle, tissue oxygen, microcirculatory, portable

Abstract

Measurement using the currently available tissue oxygen monitoring systems, such as pulse oximeter, is unreliable in patients with compromised microcirculation. Others offer high diagnostic accuracy, but are complicated and expensive in their operation. This paper is motivated to study the use of photoacoustic (PA) phase change as a predictor of skin tissue oxygen levels. This work used EPOCH 650 ultrasonic flaw detector with a longitudinal transducer and a red laser light of wavelength 633 nm for measurement of PA signals. This pilot study was conducted on a group of four human subjects. The pressure waves were collected from their anterior left arm under three experimental conditions, namely at rest, venous and arterial blood flow occlusions, for extraction of hemoglobin absorption dependent phase information. The overall mean and standard deviation (STDEV) of phase angles for at rest condition are calculated as 1.45 ± 0.26 radians (rads). Higher phase angles were determined for diastolic and systolic occlusion pressures given by 1.72 ± 0.14 rads and 2.06 ± 0.17 rads, respectively. This observation is supported by significant results (ρ =0.000) found between the three experimental studies. This work concluded that the feasibility of photoacoustic system to monitor changes in tissue oxygen performance renders it a promising alternative for portable assessment and measurement of oxygen concentration within microcirculation environment. In future, appropriate adaptive algorithm and padded support should be used to effectively enhance consistency in the detected signals and to minimize movement during the scanning for applications, such as in wound care and management. 

References

K. A. Y. J. Gordon Betts, James A. Wise, Eddie Johnson, Brandon Poe, Dean H. Kruse, Oksana Korol, Jody E. Johnson, Mark Womble, Peter DeSaix. 2013. Anatomy and Physiology Module 4: The Cardiovascular System: Blood Vessels and Circulation. OSCRice University. OpenStax.

DOI: ISSN 9781947172043 1947172042

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, et al. 2012. Monitoring Hypoxia Induced Changes in Cochlear Blood Flow and Hemoglobin Concentration using a Combined Dual-wavelength Laser Speckle Contrast Imaging and Doppler Optical Microangiography System. PloS one. 7: e52041.

DOI: https://doi.org/10.1371/journal.pone.0052041.

C. Y. Lee, B.-H. Huang, W. J. Chen, J. Y. Yi, and M. T. Tsai. 2020. Microscope-type Laser Speckle Contrast Imaging for In Vivo Assessment of Microcirculation. OSA Continuum. 3(5): 1129-1137.

DOI: https://doi.org/10.1364/OSAC.389560.

D. McDuff, I. Nishidate, K. Nakano, H. Haneishi, Y. Aoki, C. Tanabe, et al. 2020. Non-contact Imaging of Peripheral Hemodynamics during Cognitive and Psychological Stressors. Scientific Reports. 10: 1-13. DOI: https://doi.org/10.1038/s41598-020-67647-6.

A. A. Mendelson, A. Rajaram, D. Bainbridge, K. S. Lawrence, T. Bentall, M. Sharpe, et al. 2020. Dynamic Tracking of Microvascular Hemoglobin Content for Continuous Perfusion Monitoring in the Intensive Care Unit: Pilot Feasibility Study. Journal of Clinical Monitoring and Computing. 1-13.

DOI: https://doi.org/10.1007/s10877-020-00611-x.

D. Bender, S. Tweer, F. Werdin, J. Rothenberger, A. Daigeler, and M. Held. 2020. The Acute Impact of Local Cooling Versus Local Heating on Human Skin Microcirculation using Laser Doppler Flowmetry and Tissue Spectrophotometry. Burns. 46: 104-109.

DOI: https://doi.org/10.1016/j.burns.2019.03.009.

K. Goeral, B. Urlesberger, V. Giordano, G. Kasprian, M. Wagner, L. Schmidt, et al. 2017. Prediction of Outcome in Neonates with Hypoxic-ischemic Encephalopathy II: Role of Amplitude-integrated Electroencephalography and Cerebral Oxygen Saturation Measured by Near-infrared Spectroscopy. Neonatology. 112(3): 193-202.

DOI: https://doi.org/10.1159/000468976.

K. Steenhaut, K. Lapage, T. Bove, S. De Hert, and A. Moerman. 2017. Evaluation of Different Near-infrared Spectroscopy Technologies for Assessment of Tissue Oxygen Saturation during a Vascular Occlusion Test. Journal of Clinical Monitoring and Computing. 31: 1151-1158. DOI: https://doi.org/10.1159/000468976.

P. Eckerbom, P. Hansell, E. F. Cox, C. E. Buchanan, J. Weis, F. Palm, et al. 2020. Circadian Variation in Renal Blood Flow and Kidney Function in Healthy Volunteers Monitored using Non-invasive Magnetic Resonance Imaging. American Journal of Physiology-Renal Physiology. 319(6): F966-F978.

DOI: https://doi.org/10.1152/ajprenal.00311.2020.

X. Dang, N. M. Bardhan, J. Qi, L. Gu, N. A. Eze, C.-W. Lin, et al. 2019. Deep-tissue Optical Imaging of Near Cellular-sized Features. Scientific Reports. 9(1): 1-12.

DOI: https://doi.org/10.1038/s41598-019-39502-w.

N. Li, K. Murari, A. Rege, P. Miao, and N. Thakor. 2009. Multifunction-laser Speckle Blood Flow and Deoxy-hemoglobin Saturation-Imaging of Cerebrovascular Response. 4th International IEEE/EMBS Conference on Neural Engineering. 241-244.

DOI: https://doi.org/10.1109/NER.2009.5109278.

M. Nitzan, S. Noach, E. Tobal, Y. Adar, Y. Miller, E. Shalom, et al. 2014. Calibration-free Pulse Oximetry based on Two Wavelengths in the Infrared—A Preliminary Study. Sensors. 14(4): 7420-7434.

DOI: https://doi.org/10.3390/s140407420.

N. Pouratian. 2002. Optical Imaging based on Intrinsic Signals. Brain Mapping. 97-140. DOI: https://doi.org/10.1016/B978-012693019-1/50007-1.

L. Couch, M. Roskosky, B. A. Freedman, and M. S. Shuler. 2015. Effect of skin pigmentation on near infrared spectroscopy. American Journal of Analytical Chemistry. 6(12): 911.

DOI: https://doi.org/10.4236/ajac.2015.612086.

P. Cheng, W. Chen, S. Li, S. He, Q. Miao, and K. Pu. 2020. Fluoro‐Photoacoustic Polymeric Renal Reporter for Real‐time Dual Imaging of Acute Kidney Injury. Advanced Materials. 32: 1908530.

DOI: https://doi.org/10.1002/adma.201908530.

Y. Zhu, L. A. Johnson, J. M. Rubin, H. Appelman, L. Ni, J. Yuan, et al. 2019. Strain-photoacoustic Imaging as a Potential Tool for Characterizing Intestinal Fibrosis. Gastroenterology. 157: 1196-1198.

DOI: https://doi.org/10.1053/j.gastro.2019.07.061.

T. Han, M. Yang, F. Yang, L. Zhao, Y. Jiang, and C. Li. 2020. A Three-dimensional Modeling Method for Quantitative Photoacoustic Breast Imaging with Handheld Probe. Photoacoustics. 100222.

DOI: https://doi.org/10.1016/j.pacs.2020.100222.

M. Xu and L. V. Wang. 2006. Photoacoustic Imaging in Biomedicine. Review of Scientific Instruments. 77: 041101.

DOI: https://doi.org/10.1063/1.2195024.

Z. Guo, L. Li, and L. V. Wang. 2009. On the Speckle‐free Nature of Photoacoustic Tomography. Medical Physics. 36: 4084-4088. DOI: https://doi.org/10.1118/1.3187231.

J. Gateau, T. Chaigne, O. Katz, S. Gigan, and E. Bossy. 2013. Improving Visibility in Photoacoustic Imaging using Dynamic Speckle Illumination. Optics Letters. 38: 5188-5191.

DOI: https://doi.org/10.1364/OL.38.005188.

J. L. Su, A. B. Karpiouk, B. Wang, and S. Y. Emelianov. 2010. Photoacoustic Imaging of Clinical Metal Needles in Tissue. Journal of Biomedical Optics. 15: 021309.

DOI: https://doi.org/10.1117/1.3368686.

W. Choi, E.-Y. Park, S. Jeon, and C. Kim. 2018. Clinical Photoacoustic Imaging Platforms. Biomedical Engineering Letters. 8: 139-155.

DOI: https://doi.org/10.1007/s13534-018-0062-7.

T. Temma, S. Onoe, K. Kanazaki, M. Ono, and H. Saji. 2014. Preclinical Evaluation of a Novel Cyanine Dye for Tumor Imaging with in Vivo Photoacoustic Imaging. Journal of Biomedical Optics. 19: 090501.

DOI: https://doi.org/10.1117/1.JBO.19.9.090501.

S. Mallidi, G. P. Luke, and S. Emelianov. 2011. Photoacoustic Imaging in Cancer Detection, Diagnosis, and Treatment Guidance. Trends in Biotechnology. 29: 213-221.

DOI: https://doi.org/10.1016/j.tibtech.2011.01.006.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle. 2010. Photoacoustic Angiography of the Breast. Medical Physics. 37: 6096-6100.

DOI: https://doi.org/10.1118/1.3497677.

N. Nyayapathi, R. Lim, H. Zhang, W. Zheng, Y. Wang, M. Tiao, et al. 2019. Dual Scan Mammoscope (DSM)—A New Portable Photoacoustic Breast Imaging System with Scanning in Craniocaudal Plane. IEEE Transactions on Biomedical Engineering. 67: 1321-1327,

DOI: https://doi.org/10.1109/TBME.2019.2936088.

Y. Zhu, X. Lu, X. Dong, J. Yuan, M. L. Fabiilli, and X. Wang. 2019. LED-based Photoacoustic Imaging for Monitoring Angiogenesis in Fibrin Scaffolds. Tissue Engineering Part C: Methods. 25: 523-531.

DOI: https://doi.org/10.1089/ten.tec.2019.0151.

J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko. 2013. Noninvasive Photoacoustic Computed Tomography of Mouse Brain Metabolism in Vivo. Neuroimage. 64: 257-266.

DOI: https://doi.org/10.1016/j.neuroimage.2012.08.054.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar. 2010. Photoacoustic Imaging of the Breast using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives. IEEE Journal of Selected Topics in Quantum Electronics. 16: 730-739.

DOI: https://doi.org/10.1109/JSTQE.2009.2034870.

C. Yang, X. Jian, X. Zhu, J. Lv, Y. Jiao, Z. Han, et al. 2020. Sensitivity Enhanced Photoacoustic Imaging Using a High-Frequency PZT Transducer with an Integrated Front-End Amplifier. Sensors. 20: 766.

DOI: https://doi.org/10.3390/s20030766.

F. Cao, Z. Qiu, H. Li, and P. Lai. 2017. Photoacoustic Imaging in Oxygen Detection. Applied Sciences. 7: 1262.

DOI: https://doi.org/10.3390/app7121262.

T. P. Nguyen, V. T. Nguyen, S. Mondal, V. H. Pham, D. D. Vu, B.-G. Kim, et al. 2020. Improved Depth-of-Field Photoacoustic Microscopy with a Multifocal Point Transducer for Biomedical Imaging. Sensors. 20.

DOI: https://doi.org/10.3390/s20072020.

P. Schober and L. A. Schwarte. 2012. From System to Organ to Cell: Oxygenation and Perfusion Measurement in Anesthesia and Critical Care. Journal of Clinical Monitoring and Computing. 26: 255-265.

DOI: https://doi.org/10.1007/s10877-012-9350-4.

F. Gao, X. Feng, and Y. Zheng. 2014. Photoacoustic Phasoscopy Super-contrast Imaging Correlating Optical Absorption and Scattering. Photons Plus Ultrasound: Imaging and Sensing 2014. 89435L.

DOI: https://doi.org/10.1117/12.2041867.

Y. Zhou, J. Yao, and L. V. Wang. 2016. Tutorial on Photoacoustic Tomography. Journal of Biomedical Optics. 21: 061007.

DOI: https://doi.org/10.1117/1.JBO.21.6.061007.

F. Gao, X. Feng, Y. Zheng, and C.-D. Ohl. 2017. Photoacoustic Resonance Spectroscopy for Biological Tissue Characterization. Journal of Biomedical Optics. 19: 067006.

DOI: https://doi.org/10.1117/1.JBO.19.6.067006.

E. Hysi, L. A. Wirtzfeld, J. P. May, E. Undzys, S.-D. Li, and M. C. Kolios. 2017. Photoacoustic Signal Characterization of Cancer Treatment Response: Correlation with Changes in Tumor Oxygenation. Photoacoustics. 5: 25-35.

DOI: https://doi.org/10.1016/j.pacs.2017.03.003.

Jinge, Y., Guang, Z., Wu, C., Zihui, C., Qiquan, S., Man, W., et al. 2020. Photoacoustic Imaging of Hemodynamic Changes in Foreman Skeletal Muscle during Cuff Occlusion. Biomedical Optics Express. 11(8): 4560-4570.

DOI: https://doi.org/10.1364/BOE.392221.

H. Zhao, Y. Liu, T. Farooq, and H. Fang. 2021. Dual-Wavelength Continuous Wave Photoacoustic Doppler Flow Measurement. Photonic Sensors. 1-9.

DOI: https://doi.org/10.1007/s13320-021-0633-6.

R. N. Pittman. 2011. The Circulatory System and Oxygen Transport. Regulation of Tissue Oxygenation. Morgan & Claypool Life Sciences. 3(3): 1-100.

DOI: https://doi.org/10.4199/C00029ED1V01Y201103ISP017.

J. R. Rajian, P. L. Carson, and X. Wang. 2009. Quantitative Photoacoustic Measurement of Tissue Optical Absorption Spectrum Aided by an Optical Contrast Agent. Optics Express. 17: 4879-4889.

DOI: https://doi.org/10.1364/OE.17.004879.

T. Jewell. 2019. Hemoglobin (HGB) Test Results. U.S. Department of Health and Human Services National Institutes of Health.

M. D. Scott Litin. 2019. Hemoglobin Test. Mayo Foundation for Medical Education and Research (MFMER).

C. E. Rhodes and M. Varacallo. 2019. Physiology, Oxygen Transport. StatPearls. StatPearls Publishing.

DOI:https://www.ncbi.nlm.nih.gov/books/NBK538336/

L. Claesson-Welsh. 2015. Vascular Permeability—The Essentials. Upsala Journal of Medical Sciences. 120: 135-143. DOI: https://doi.org/10.3109/03009734.2015.1064501.

M. A. Abu, A. S. Borhan, A. K. A. Karim, M. F. Ahmad, and Z. A. Mahdy. 2020. Comparison between Iberet Folic® and Zincofer® in Treatment of Iron Deficiency Anaemia in Pregnancy. Hormone Molecular Biology and Clinical Investigation. 42(1): 49-56.

DOI: https://doi.org/10.1515/hmbci-2020-0034.

Downloads

Published

2022-05-30

Issue

Section

Science and Engineering

How to Cite

PHOTOACOUSTIC PHASE ANGLE FOR NONINVASIVE MONITORING OF MICROCIRCULATORY CHANGE IN HUMAN SKIN: A PRELIMINARY INVESTIGATION . (2022). Jurnal Teknologi, 84(4), 159-166. https://doi.org/10.11113/jurnalteknologi.v84.18005