ACID WASH INFLUENCES ON PHYSICOCHEMICAL CHARACTERISTICS OF BAMBOO LEAVES ASH
DOI:
https://doi.org/10.11113/jurnalteknologi.v85.18082Keywords:
Amorphous, biomass, crystalline, mesoporous, renewableAbstract
Silica production from sandstone requires tremendous fossil resources that threaten our environment. Hence, greener resources from biomass should be utilized. One of them is from bamboo leaves which contain rich silica in ash. Even so, acid wash should be applied to achieve higher silica purity. This work aims to investigate the acid wash influences on the physicochemical characteristics of bamboo leaves ash (BLA). The treatment used 1 mol/L HCl under 1-h, 2-h, and no acid wash as a control. The BLA crystallography indicates a fully amorphous phase of silica. Interestingly, 1-h acid wash precisely reduces the silica purity from 95.35% to 94.74%, but it then increases to 96.06% under 2-h acid wash. It is also notified that the longer acid wash duration could alleviate leaves’ mechanical strength. After calcination, consequently, a smaller average particle size of BLA was nominated under 2-h acid wash (6.32 mm). It was then followed by 1-h acid wash (21.32 mm) and no acid wash (149.44 mm). The 2-h acid wash is concluded able to intensify silica purity as well as reduce the particle size of BLA. Finally, acid wash treatment becomes important to facilitate further BLA extraction in order to achieve high purity of silica.
References
Ali, A. 2003. The Silica-based Industry in Malaysia. Bull Geol Soc Malaysia. 46: 223-30. https://doi.org/10.7186/bgsm46200337.
Myseny, B., Richet, P. 2019. Chapter 5 - Silica. Silica Glasses And Melts (Second Edition). 143-83. https://doi.org/10.1016/B978-0-444-63708-6.00005-3.
Morgan, J. W., Anderst, E. 1980. Chemical Composition of Earth, Venus, and Mercury. Adv Mar Biol. 77: 6973-7. https://doi.org/10.1073/pnas.77.12.6973.
Stewart, B. D., Simmons, W. B. 2018. Silica Mineral. United States: Encyclopedia Britannica, Inc.
The Editors of Encyclopedia Britannica. 2022. Silica. Encycl Br. https://www.britannica.com/science/silica.
NASA. 2018. Exploding Stars Make Key Ingredient in Sand, Glass. Jet Propuls Lab Calif Inst Technol. https://www.jpl.nasa.gov/news/exploding-stars-make-key-ingredient-in-sand-glass.
Steven, S., Restiawaty, E., Bindar, Y. 2022. Operating Variables on Production of High Purity Bio-silica from Rice Hull Ash by Extraction Process. J Eng Technol Sci. 5: 220304. https://doi.org/10.5614/j.eng.technol.sci.2022.54.3.4.
Ng, E. P., Chow, J. H., Mukti, R. R., Muraza, O., Ling, T. C., Wong, K. L. 2017. Hydrothermal Synthesis of Zeolite a from Bamboo Leaf Biomass and Its Catalytic Activity in Cyanoethylation of Methanol under Autogenic Pressure and Air Conditions. Mater Chem Phys. 201: 78-85. https://doi.org/10.1016/j.matchemphys.2017.08.044.
Qing, Y., Zenan, Z., Deyu, K., Rongshen, C. 2007. Influence of Nano-SiO2 Addition on Properties of Hardened Cement Paste as Compared with Silica Fume. Constr Build Mater. 21: 539-45.
https://doi.org/10.1016/j.conbuildmat.2005.09.001.
Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D., Repette, W. L. 2009. Effect of Nano-silica on Rheology and Fresh Properties of Cement Pastes and Mortars. Constr Build Mater. 23: 2487-91. https://doi.org/10.1016/j.conbuildmat.2009.02.005.
Salimon, J., Salih, N., Yousif, E. 2012. Industrial Development and Applications of Plant Oils and Their Biobased Oleochemicals. Arab J Chem. 5: 135-45. https://doi.org/10.1016/j.arabjc.2010.08.007.
Rangaraj, S., Venkatachalam, R. 2017. A Lucrative Chemical Processing of Bamboo Leaf Biomass to Synthesize Biocompatible Amorphous Silica Nanoparticles of Biomedical Importance. Appl Nanosci. 7: 145-53. https://doi.org/10.1007/s13204-017-0557-z.
Silviana, S., Bayu, W. J. 2018. Silicon Conversion from Bamboo Leaf Silica by Magnesiothermic Reduction for Development of Li-ion Battery Anode. MATEC Web of Conferences. 156: 1-4.
https://doi.org/10.1051/matecconf/201815605021.
Ciullo, P. A. 1996. The Industrial Minerals. In: Ciullo PABT-IM and TU (Eds). Industrial Minerals and Their Uses: A Handbook and Formulary. 1st ed. Park Ridge, NJ: William Andrew Publishing. 17-82.
https://doi.org/https://doi.org/10.1016/B978-081551408-4.50003-X.
Conley, D. J., Struyf, E. 2009. Silica. Encyclopedia of Inland Waters. 1st ed. Elsevier Inc. 85-8.
https://doi.org/10.1016/B978-012370626-3.00100-9.
Ramli, Y., Steven, S., Restiawaty, E., Bindar, Y. 2022. Simulation Study of Bamboo Leaves Valorization to Small-Scale Electricity and Bio-silica Using ASPEN PLUS. Bioenerg Res. 15: 1918-26. https://doi.org/10.1007/s12155-022-10403-7.
Grbeš, A. 2016. A Life Cycle Assessment of Silica Sand: Comparing the Beneficiation Processes. Sustain. 8: 1-9. https://doi.org/10.3390/su8010011.
Steven, S., Hernowo, P., Restiawaty, E., Irawan, A., Rasrendra, C. B., Riza, A., et al. 2022. Thermodynamics Simulation Performance of Rice Husk Combustion with a Realistic Decomposition Approach on the Devolatilization Stage. Waste Biomass Valor. 13: 2735-47. https://doi.org/10.1007/s12649-021-01657-x.
Hernowo, P., Steven, S., Restiawaty, E., Bindar, Y. 2022. Nature of Mathematical Model in Lignocellulosic Biomass Pyrolysis Process Kinetic using Volatile State Approach. J Taiwan Inst Chem Eng. 139: 104520. https://doi.org/10.1016/j.jtice.2022.104520.
Bindar, Y., Steven, S., Kresno, S. W., Hernowo, P., Restiawaty, E., Purwadi, R., et al. 2022. Large-scale Pyrolysis of Oil Palm Frond using Two-box Chamber Pyrolyzer for Cleaner Biochar Production. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02842-1.
Quispe, I., Navia, R., Kahhat, R. 2019. Life Cycle Assessment of Rice Husk as an Energy Source. A Peruvian Case Study. J Clean Prod. 209: 1235-44. https://doi.org/10.1016/j.jclepro.2018.10.312.
Madusari, S., Jamari, S. S., Nordin, NIAA, Bindar, Y., Prakoso, T., Restiawaty, E., et al. 2023. Hybrid Hydrothermal Carbonization and Ultrasound Technology on Oil Palm Biomass for Hydrochar Production. ChemBioEng Rev. 10: 37-54. https://doi.org/10.1002/cben.202200014.
Nukman, Sipahutar, R. 2015. The Potential of Biomass from Wood, Leaves, and Grass as Renewable Energy Sources in South Sumatera, Indonesia. Energy Sources, Part A Recover Util Environ Eff. 37: 2710-5. https://doi.org/10.1080/15567036.2012.738286.
Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., Watson, I. 2018. Chapter 8 - Biomass Conversion Technologies. Greenhouse Gas Balances of Bioenergy Systems. 107-39.
Steven, S., Friatnasary, D. L., Wardani, A. K., Khoiruddin, K., Suantika, G., Wenten, I. G. 2022. High Cell Density Submerged Membrane Photobioreactor (SMPBR) for Microalgae Cultivation. IOP Conf Ser: Earth Environ Sci. 963: 012034. https://doi.org/10.1088/1755-1315/963/1/012034.
Restiawaty, E., Marwani, E., Steven, S., Mega Rahayu, G., Hanif, F., Prakoso, T. 2023. Cultivation of Chlorella vulgaris in Mediums with Varying Nitrogen Sources and Concentrations to Induce the Lipid Yield. Indian Chem Eng. 1-12. https://doi.org/10.1080/00194506.2022.2164525.
Ahmad, M. S., Klemeš, J. J., Alhumade, H., Elkamel, A., Mahmood, A., Shen, B., et al. 2021. Thermo-kinetic Study to Elucidate the Bioenergy Potential of Maple Leaf Waste (MLW) by Pyrolysis, TGA and Kinetic Modelling. Fuel. 293: 120349. https://doi.org/10.1016/j.fuel.2021.120349.
BPS Indonesia. 2021. Statistik Produksi Kehutanan 2020. Indonesia: Badan Pusat Statistika.
Scurlock, J. M. O., Dayton, D. C., Hames, B. 2000. Bamboo: An Overlooked Biomass Resource? Biomass Bioenergy. 19: 229-44. https://doi.org/10.1016/S0961-9534(00)00038-6.
Antwi-Boasiako, C., Coffie, G. Y., Darkwa, N. A. 2011. Proximate Composition of the Leaves of Bambusa Ventricosa, Oxytenanthera Abyssinica and Two Varieties of Bambusa Vulgaris. Sci Res Essays. 6: 6835-9. https://doi.org/10.5897/sre11.797.
Wróblewska, K. B., de Oliveira, D. C. S., Grombone-Guaratini, M. T., Moreno, P. R. H. 2018. Medicinal Properties of Bamboos. Pharmacogn. - Med. plants. 1st ed. IntechOpen. 1-18.
https://doi.org/10.5772/intechopen.82005.
Kim, C., Baek, G., Yoo, B. O., Jung, S. Y., Lee, K. S. 2018. Regular Fertilization Effects on the Nutrient Distribution of Bamboo Components in a Moso Bamboo (Phyllostachys pubescens (Mazel) Ohwi) Stand In South Korea. Forests. 9: 1-12. https://doi.org/10.3390/f9110671.
Luo, Z., Hu, X., Lu, X., Luo, F. 2017. Effects of Application of Composted Water-bamboo Leaves on Soil Nutrients and Vegetable Quality. 19th EGU General Assembly, Vienna, Austria. 5927.
Pattnaik, D., Kumar, S., Bhuyan, S. K., Mishra, S. C. 2018. Effect of Carbonization Temperatures on Biochar Formation of Bamboo Leaves. IOP Conf Ser: Mater Sci Eng. 338. https://doi.org/10.1088/1757-899X/338/1/012054.
Steven, S., Restiawaty, E., Bindar, Y. 2022. Simple Mass Transfer Simulation using a Single-particle Heterogeneous Reaction Approach in Rice Husk Combustion and Rice Husk Ash Extraction. IOP Conf Ser: Earth Environ Sci. 963: 012050. https://doi.org/10.1088/1755-1315/963/1/012050.
Steven, S., Restiawaty, E., Bindar, Y. 2022. A Simulation Study on Rice Husk to Electricity and Silica Mini-Plant: From Organic Rankine Cycle (ORC) Study to its Business and Investment Plan. Waste Biomass Valor. https://doi.org/10.1007/s12649-022-01957-w.
Purbasari, A., Samadhi, T. W., Bindar, Y. 2016. Thermal and Ash Characterization of Indonesian Bamboo and Its Potential for Solid Fuel and Waste Valorization. Int J Renew Energy Dev. 5: 95-100. https://doi.org/10.14710/ijred.5.2.95-100.
Restiawaty, E., Bindar, Y., Syukri, K., Syahroni, O., Steven, S., Pramudita, R. A., et al. 2022. Production of Acid-treated-biochar and Its Application to Remediate Low Concentrations of Al(III) and Ni(II) Ions in the Water Contaminated with Red Mud. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03338-8.
Lee, J. H., Kwon, J. H., Lee, J-W., Lee, H., Chang, J. H., Sang, B-I. 2017. Preparation of High Purity Silica Originated from Rice Husks by Chemically Removing Metallic Impurities. J Ind Eng Chem. 50: 79-85. https://doi.org/https://doi.org/10.1016/j.jiec.2017.01.033.
Chen, D., Gao, D., Capareda, S. C., Huang, S., Wang, Y. 2019. Effects of Hydrochloric Acid Washing on the Microstructure and Pyrolysis Bio-oil Components of Sweet Sorghum Bagasse. Bioresour Technol. 277: 37-45. https://doi.org/https://doi.org/10.1016/j.biortech.2019.01.023.
Tan, H., Wang, S. 2009. Experimental Study of the Effect of Acid-washing Pretreatment on Biomass Pyrolysis. J Fuel Chem Technol. 37: 668-72.
https://doi.org/https://doi.org/10.1016/S1872-5813(10)60014-X.
Javed, M. A. 2020. Acid Treatment Effecting the Physiochemical Structure and Thermal Degradation of Biomass. Renew Energy. 159: 444-50. https://doi.org/10.1016/j.renene.2020.06.011.
Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. 2010. An Overview of the Chemical Composition of Biomass. Fuel. 89: 913-33
https://doi.org/10.1016/j.fuel.2009.10.022.
Jenkins, B. M., Baxter, L. L., Miles, T. R., Miles, T. R. 1998. Combustion Properties of Biomass. Fuel Process Technol. 54: 17-46. https://doi.org/10.1016/S0378-3820(97)00059-3.
Costantini, L. M., Gilberti, R. M., Knecht, D. A. 2011. The Phagocytosis and Toxicity of Amorphous Silica. PLoS ONE. 6:e14647. https://doi.org/10.1371/journal.pone.0014647.
Graf, C. 2006. Silica, Amorphous. Kirk-Othmer Encyclopedia of Chemical Technology. 22: 1-43. https://doi.org/https://doi.org/10.1002/0471238961.0113151823010404.a01.pub2.
Boonmee, A., Jarukumjorn, K. 2019. Preparation and Characterization of Silica Nanoparticles from Sugarcane Bagasse Ash for using as a Filler in Natural Rubber Composites. Polym Bull. 77: 3457-3472. https://doi.org/10.1007/s00289-019-02925-6.
Rovani, S., Santos, J. J., Corio, P., Fungaro, D. A. 2018. Highly Pure Silica Nanoparticles with High Adsorption Capacity Obtained from Sugarcane Waste Ash. ACS Omega. 3: 2618-27.
https://doi.org/10.1021/acsomega.8b00092.
Umeda, J., Kondoh, K. 2010. High-purification of Amorphous Silica Originated from Rice Husks by Combination of Polysaccharide Hydrolysis and Metallic Impurities Removal. Ind Crops Prod. 32: 539-44. https://doi.org/https://doi.org/10.1016/j.indcrop.2010.07.002.
Alizadeh, Arasi, M., Salem, A., Salem, S. 2020. Extraction of Nano‐porous Silica from Hydrosodalite Produced via Modification of Low‐grade Kaolin for Removal of Methylene Blue from Wastewater. J Chem Technol Biotechnol. 95: 1989-2000.
https://doi.org/10.1002/jctb.6387.
Leng, L., Xiong, Q., Yang, L., Li, H. Zhou, Y., Zhang, W., et al. 2021. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci Total Environ. 763: 144204. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144204.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.