THE APPLICATION OF ENDOSCOPE AND IMAGE PROCESSING FOR DETERMINING REMAZOL RED DYE CONCENTRATION IN WATER SAMPLES
DOI:
https://doi.org/10.11113/jurnalteknologi.v84.18196Keywords:
Remazol dye, endoscope, Image Processing, RGB, grayscaleAbstract
Remazol dyes are widely used in textile industry, which are then discharged to the environment as waste products. Studies on bioremediation and decolorization of dye waste normally employ expensive spectrometers or colorimeters. This study proposes a low-cost procedure to determine the concentration of Remazol red dye with the use of a digital endoscope and image processing technique. The concentration of Remazol red dye considered in this study ranges from 0.001 to 0.700 g/L. An endoscope is used to capture digital images of dye samples. Reg-green-blue (RGB) images of the samples are converted to grayscale images, which are then converted to a mean grayscale index (MGI). The MGI is then calibrated with real concentration of dye samples. Three calibration curves were developed for three different ranges of dye concentration of 0.001- 0.010 g/L, 0.020 – 0.100 g/L, and 0.100 – 0.700 g/L, with a coefficient of determination (R2) of 0.961, 0.9793, and 0.9903, respectively.
References
Spellman, F. R. 2014. Handbook of Water and Wastewater Treatment Plant Operations. Boca Raton: Taylor and Francis Group.
Surwase, S. V., K. K. Deshpande, S. S. Phugare, and J. P. Jadhav. 2012. Biotransformation Studies of Textile Dye Remazol Orange 3R. 3 Biotech. 3(4): 267-275.
Doi: https://doi.org/10.1007/s13205-012-0093-1.
Braun, C. L., and S. N. Smirnov. 1993. Why is Water Blue? Journal of Chemical Education. 70(8): 612-614.
Doi: 10.1021/ed070p612.
Guidelines for Drinking-Water Quality. 1997. Edisi ke-2, Volume 3. World Health Organization. 9.
Greenberg, A. E., L. S. Clesceri, A. D. Eaton, and M. A. H. Franson. 1992. Standard Methods for the Examination of Water and Wastewater. Edisi ke-18. American Public Health Association.
Malakootian, M., and A. Fatehizadeh. 2010. Color Removal from Water by Coagulation/Caustic Soda and Lime. Iranian Journal of Environmental Health Science and Engineering. 7(3): 267-272.
URL: http://www.bioline.org.br/pdf?se10030.
Bao, J., T. Li, and B. Ren. 2017. Determination of Wastewater Color by Integral Spectrophotometer based on Complementary Color. Advances in Engineering Research. 120: 1249-1253.
Doi: 10.2991/ifeesm-17.2018.228.
Kalantari, M. H., S. A. Ghoraishian, and M. Mohaghegh. 2017. Evaluation of Accuracy of Shade Selection using Two Spectrophotometer Systems: Vita Easyshade and Degudent Shadepilot. European Journal of Dentistry. 11(2): 196-200. Doi: 10.4103/ejd.ejd.195.16.
McCracken, K. E., and J-Y. Yoon. 2016. Recent Approaches for Optical Smartphone Sensing in Resource – Limited Settings: A Brief Review. Analytical Methods. 8: 6591-6601.
Doi: 10.1039/C6AY01575A.
Zou, L., Z. Gu, and M. Sun, M. 2015. Review of the Application of Quantum Dots in the Heavy-metal Detection. Toxicology and Environmental Chemistry. 97: 477-490.
Doi: 10.1080/02772248.2015.1050201.
González-Morales, D., A. Valencia, A. Díaz-Nuñez, M. Fuentes-Estrada, O. López-Santos, and O. García-Beltrán. 2020. Development of a Low-Cost UV-Vis Spectrophotometer and Its Application for the Detection of Mercuric Ions Assisted by Chemosensors. Sensors. 20(906): 1-16.
Doi: 10.3390/s20030906.
Ramli, S. N. A., K. Kadaruddin, M. F. Zainuddin and Z. Abbas. 2019. The Development of Low Cost Turbidimeter using Smartphone Camera and Image Processing. International Journal of Innovative Technology and Exploring Engineering. 8(8S): 420-424.
URL: https://www.ijitee.org/wp-content/uploads/papers /v8i8s/H10720688S19.pdf.
Gillett, D. and D. Marchiori. 2019. A Low-Cost Continuous Turbidity Monitor. Sensors. 19(3039): 1-18.
Doi: 10.3390/s19143039.
Parra, L., J. Rocher, J. Escrivá, and L. Lloret. 2018. Design and Development of Low-cost Smart Turbidity Sensor for Water Quality Monitoring in Fish Farms. Aquacultural Engineering. 81: 10-18.
Doi: 10.1016/j.aquaeng.2018.01. 004.
Hussain. I, K. Ahamad and P. Nath .2016. Water Turbidity Sensing using a Smartphone. RSC Advances. 6: 22374-22382.
Doi: 10.1039/C6RA02483A.
O’Donoghue, J. 2019. Simplified Low-Cost Colorimetry for Education and Public Engagement. Journal of Chemical Education. 96: 1136-1142
Doi: https://doi.org/10.1021/acs.jchemed. 9b00301.
Anzalone, G. C., A. G. Glover and J. M. Pearce. 2013. Open-Source Colorimeter. Sensors. 13: 5338-5346.
Doi: 10.3390/s130405338.
Kadaruddin, K. and M. F. Zainuddin. 2020. A Brief Review on Low-cost Turbidimeter Designs. IOP Conference Series: Earth and Environmental Science. 476.
Kolekar Y. M. and K. M. Kodam K. M. 2011. Decolorization of Textile Dyes by Alishewanella sp. KMK6. Applied Microbiology. 95: 521-529.
Doi: 10.1007/s00253-011-3698-0.
Novotny C., N. Dias, A. Kapanen, K. Malachova, M. Vandrovcova, and M. Itavaara. 2006. Comparative Use of Bacterial, Algal and Protozoan Tests to Study Toxicity of Azo and Anthraquinone Dyes. Chemosphere. 63: 1436-1442.
Doi: 10.1016/j.chemosphere.2005.10.002.
Hai, F. I., K. Yamamoto, and K. Fukushi. 2007. Hybrid Treatment System for Dye Wastewater. Critical Reviews in Environmental Science and Technology. 37(4): 315-377.
Doi: 10.1080/10643380601174723.
Ekambaram, S. P., Perumal, and U. Annamalai. 2016. Decolorization and Biodegradation of Remazol Reactive Dyes by Clostridium Species. 3 Biotech. 6(20).
Doi: 10.1007/s13205-015-0335-0.
Gokulan, R., G. G. Prabhu and J. Jegan. 2019. Remediation of Complex Remazol Effluent using Biochar Derived from Green Seaweed Biomass. International Journal of Phytoremediation. 21(12): 1-11.
Doi: 10.1080/15226514.2019.1612845.
Omar, A. F. and M. Z. MatJafri. 2009. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity. Sensors. 9(10): 8311-8335.
Doi: 10.3390/s91008311.
Reyes-Coronado, A., A. Garcia-Valenzuela, C. Sanchez-Perez, and R. G. Barrea. 2005. Measurement of the Effective Refractive Index of a Turbid Colloidal Suspension using Light Refraction. New Journal of Physics. 7(89): 1-21.
Doi: 10.1088/1367-2630/7/1/089.
Zhang, X., D. J. Faber, A. L. Post, T. G. van Leeuwen, and H. J. C. M. Sterenborg. 2019. Refractive Index Measurement using Single Fiber Reflectance spectroscopy. Journal of Biophotonics. 12(7): 1-11.
Doi: 10.1002/jbio.201900019.
Sai, T., M. Saba, E. R. Dufresne, U. Steiner, and B. D. Wilts. 2020. Designing Refractive Index Fluids using the Kramers–Kronig Relations. Faraday Discussion. 223: 136-144.
Doi: 10.1039/D0FD00027B.
Hamidi, F. N., M. F. Zainuddin, Z. Abbas, and A. F. Ahmad. 2017. Low Cost and Simple Procedure to Determine Water Turbidity with Image Processing. International Conference on Imaging, Signal Processing and Communication (ICISPC) 2017. Penang, Malaysia. 26 – 28 July 2017. 30-34.
Doi: 10.1145/3132300.3132302.
Karnawat, V. and S. L. Patil. 2016. Turbidity Detection using Image Processing. International Conference on Computing, Communication and Automation (ICCCA) 2016. Uttar Pradesh, India. 29-30 April 2016): 1086-1089.
Doi: 10.1109/CCAA.2016.7813877.
Koschan, A. and M. Abidi. 2008. Digital Color Image Processing. New Jersey: John Wiley and Sons, Inc.
Malkoc, S. 2017. Removal of Remazol Red Dye with Live Cell Aspergillus Terreus. Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering. 18(3): 654- 662.
Doi: 10.18038/aubtda.283045.
AgriMetSoft. 2019. Online Calculators. Available on:vhttps://agrimetsoft.com/calculators/Normalized%20Root%20Mean%20Square%20Error. Last assessed: 18 Disember 2021.
Chicco, D., M. J. Warrens, and G. Jurman. 2021. The Coefficient of Determination R-squared is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. Peer J Computer Science. 7:e623: 1-24.
Doi: 10.7717/peerj-cs.623.
Chai, T. and R. R. Draxler. 2014. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? – Arguments against Avoiding RMSE in the Literature. Geoscience Model Development. 7: 1247-1250.
Doi: 10.7717/peerj-cs.623.
Hoang, L. Q., H. B. L. Chi, D. N. N. Khanh, N. T. T. Vy, P. X. Hanh, T. N. Vu, H. T. Lam, and N. T. K. Phuong. 2021. Development of a Low-cost Colorimeter and its Application for Determination of Environmental Pollutants, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 249: 119212.
Doi: 10.1016/j.saa.2020.119212.
Khoshmaram, L. and M. Mohammadi. 2021. Combination of a Smart Phone based Low-cost Portable Colorimeter with Air-assisted Liquid-liquid Microextraction for Speciation and Determination of Chromium (III) and (VI). Microchemical Journal. 164(105991).
Doi: 10.1016/j.microc.2021.105991.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.