A MINI-REVIEW OF RECENT STUDIES ON LEAD AND LEAD-FREE PEROVSKITE MATERIALS FOR SOLAR CELLS APPLICATION AND THEIR ISSUES

Authors

  • Ain Ajeerah Ramli Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia https://orcid.org/0000-0001-7990-8502
  • Abd. Khamim Ismail Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia https://orcid.org/0000-0002-0158-121X
  • Rosnita Muhammad Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Muhamad Faiz Hashim Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18208

Keywords:

Solar cell, perovskite materials, lead-free perovskite, the toxicity of lead, stability

Abstract

Perovskite is gaining popularity in solar cell technologies and optoelectronics that rely on lead-based material. Perovskite solar cell (PSC) technologies are viewed as promising forthcoming innovations for their proficiency and monetary of the thin film due to high demand in the technology market. Lead-free perovskite material has become a viable alternative to lead-based perovskite, which has dominated the solar cell market for many years, due to toxicity and stability difficulties that have plagued lead-based solar cells. The large-scale commercial manufacture of lead-free halide perovskites solar cells can be expanded and its benefits in the solar field could be enhanced. Compared with lead-based perovskite, the lead-free perovskite material could also achieve a high-power conversion efficiency (PCE) indicating good solar cell performance. This review studied the perovskite materials, challenge of lead perovskite solar cell commercialization and summarizes recent research work regarding the perovskite solar cell. Moreover, this review forecast the future of perovskite solar cells in parallel with the Third Generation of Solar Cells.

References

Roy, P., N. Kumar Sinha, S. Tiwari, and A. Khare. 2020. A Review on Perovskite Solar Cells: Evolution of Architecture, Fabrication Techniques, Commercialization Issues and Status. Solar Energy. 198: 665-688.

https://doi.org/10.1016/j.solener.2020.01.080.

Sahoo, S. K., B. Manoharan, and N. Sivakumar. 2018. Introduction: Why Perovskite and Perovskite Solar Cell? Perovskite Photovoltaics. 1-24.

https://doi.org/10.1016/B978-0-12-812915-9.00001-0.

Roy, P., A. Ghosh, F. Barclay, A. Khare, and E. Cuce. 2022, Perovskite Solar Cells: A Review of the Recent Advances. Coatings. 12(8): 1089.

https://doi.org/10.3390/coatings12081089.

Wang, R., M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, and Y. Yang. 2019. A Review of Perovskites Solar Cell Stability. Advanced Functional Materials.

https://doi.org/10.1002/adfm.201808843.

Noel, N. K. et al. 2014. Lead-free Organic-inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ. Sci. 7(9): 3061-3068.

https://doi.org/10.1039/C4EE01076K.

Green, M. A., A. Ho-Baillie, and H. J. Snaith. 2014. The Emergence of Perovskite Solar Cells. Nature Photonics. 8(7): 506-514.

https://doi.org/10.1038/nphoton.2014.134.

Yu, Y. et al. 2016. Thermally Evaporated Methylammonium Tin Triiodide Thin Films for Lead-free Perovskite Solar Cell Fabrication. RSC Advances. 6(93): 90248-90254.

https://doi.org/10.1039/C6RA19476A.

Rahul, P. K. Singh, R. Singh, V. Singh, B. Bhattacharya, and Z. H. Khan. 2018. New Class of Lead Free Perovskite Material for Low-cost Solar Cell Application. Materials Research Bulletin. 97: 572-577.

https://doi.org/10.1016/j.materresbull.2017.09.054.

Xiao, M. et al. 2014. A Fast Deposition-crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-film Solar Cells. Angew Chem Int Ed Engl. 53(37): 9898-903.

https://doi.org/10.1002/anie.201405334.

Galindo, J. et al. 2015. Low Cost Spin Coating Fabrication of Efficient Perovskite Thin Film Layers. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). 1-4. IEEE.

https://doi.org/10.1109/PVSC.2015.7355736.

Yue, L., B. Yan, M. Attridge, and Z. Wang. 2016. Light Absorption in Perovskite Solar Cell: Fundamentals and Plasmonic Enhancement of Infrared Band Absorption. Solar Energy. 124: 143-152.

https://doi.org/10.1016/j.solener.2015.11.028.

Jamal, M. S. et al. 2018. Fabrication Techniques and Morphological Analysis of Perovskite Absorber Layer for High-efficiency Perovskite Solar Cell: A Review. Renewable and Sustainable Energy Reviews. 98: 469-488.

https://doi.org/10.1016/j.rser.2018.09.016.

Mourtada Elseman, A. 2019. Organometal Halide Perovskites Thin Film and Their Impact on the Efficiency of Perovskite Solar Cells. Coatings and Thin-Film Technologies.

https://doi.org/10.5772/intechopen.79678

Dunlap-Shohl, W. A., Y. Zhou, N. P. Padture, and D. B. Mitzi. 2019. Synthetic Approaches for Halide Perovskite Thin Films. Chem Rev. 119(5): 3193-3295.

https://doi.org/10.1021/acs.chemrev.8b00318.

Hien, V. X., P. T. Hung, J. Han, S. Lee, J.-H. Lee, and Y.-W. Heo. 2020. Growth and Gas Sensing Properties of Methylammonium Tin Iodide Thin Film. Scripta Materialia. 178: 108-113.

https://doi.org/10.1016/j.scriptamat.2019.10.049.

Zhou, D., T. Zhou, Y. Tian, X. Zhu, and Y. Tu. 2018. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials. 1-15.

https://doi.org/10.1155/2018/8148072.

Feng, Z. et al. 2018. Towards Efficient Perovskite Light-emitting Diodes: A Multi-step Spin-coating Method for a Dense and Uniform Perovskite Film. Organic Electronics. 61: 18-24.

https://doi.org/10.1016/j.orgel.2018.06.052.

Suresh Kumar, N. and K. Chandra Babu Naidu. 2021. A Review on Perovskite Solar Cells (PSCs), Materials and Applications. Journal of Materiomics. 7(5): 940-956.

https://doi.org/10.1016/j.jmat.2021.04.002.

Schileo, G. and G. Grancini. 2021. Lead or No Lead? Availability, Toxicity, Sustainability and Environmental Impact of Lead-free Perovskite Solar Cells. Journal of Materials Chemistry C. 9(1): 67-76.

https://doi.org/10.1039/D0TC04552G.

Jeong, J. et al. 2021. Pseudo-halide Anion Engineering for Alpha-FAPbI3 Perovskite Solar Cells. Nature. 592(7854): 381-385.

https://doi.org/10.1038/s41586-021-03406-5.

Hongsith, K., S. Wongrerkdee, A. Ngamjarurojana, and S. Choopun. 2019. Efficiency Enhancement of Perovskite Solar Cell by using Pre-heat Treatment in Two-step Deposition Method. Thin Solid Films. 684: 9-14.

https://doi.org/10.1016/j.tsf.2019.05.055.

Wang, Y., M. Zhong, and L. Chai. 2018. Effects of the Concentration of PbI2 and CH3NH3I on the Perovskite Films and the Performance of Perovskite Solar Cells based on ZnO-TiO2 Nanorod Arrays. Superlattices and Microstructures. 123: 189-200.

https://doi.org/10.1016/j.spmi.2018.07.024.

Ke, W. and M. G. Kanatzidis. 2019. Prospects for Low-toxicity Lead-free Perovskite Solar Cells. Nat Commun. 10(1): 965.

https://doi.org/10.1038/s41467-019-08918-3.

Chu, L. et al. 2019. Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications. Nano-Micro Letters. 11(1).

https://doi.org/10.1007/s40820-019-0244-6.

Chen, M. et al. 2019. Highly Stable and Efficient All-inorganic Lead-free Perovskite Solar Cells with Native-oxide Passivation. Nat Commun. 10(1): 16.

https://doi.org/10.1038/s41467-018-07951-y.

Maafa, I. M. 2022. All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges. Nanomaterials (Basel). 12(10).

https://doi.org/10.3390/nano12101651.

Huang, Y. Q., J. Su, Q. F. Li, D. Wang, L. H. Xu, and Y. Bai. 2019. Structure, Optical and Electrical Properties of CH3NH3SnI3 Single Crystal. Physica B: Condensed Matter. 563: 107-112.

https://doi.org/10.1016/j.physb.2019.03.035.

Wang, P. et al. 2020. Ion Exchange/Insertion Reactions for Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Adv Sci (Weinh). 7(9): 1903047.

https://doi.org/10.1002/advs.201903047.

Nishimura, K. et al. 2020. Lead-free Tin-halide Perovskite Solar Cells with 13% Efficiency. Nano Energy. 74: 104858.

https://doi.org/10.1016/j.nanoen.2020.104858.

Gu, F. et al. 2019. Lead‐Free Tin‐Based Perovskite Solar Cells: Strategies Toward High Performance. Solar RRL. 3(9).

https://doi.org/10.1002/solr.201900213.

Yang, D. et al. 2021. Germanium-lead Perovskite Light-emitting Diodes. Nat Commun. 12(1): 4295.

https://doi.org/10.1038/s41467-021-24616-5.

Chiara, R., M. Morana, and L. Malavasi. 2021. Germanium-Based Halide Perovskites: Materials, Properties, and Applications. Chempluschem. 86(6): 879-888.

https://doi.org/10.1002/cplu.202100191.

Sun, P. P., Q. S. Li, L. N. Yang, and Z. S. Li. 2016. Theoretical Insights into a Potential Lead-free Hybrid Perovskite: Substituting Pb(2+) with Ge(2.). Nanoscale. 8(3): 1503-12.

https://doi.org/10.1039/C5NR05337D.

Zhao, X. and N.-G. Park. 2015. Stability Issues on Perovskite Solar Cells. Photonics. 2(4): 1139-1151.

https://doi.org/10.3390/photonics2041139.

K. Rao, M., D. N. Sangeetha, M. Selvakumar, Y. N. Sudhakar, and M. G. Mahesha. 2021. Review on Persistent Challenges of Perovskite Solar Cells' Stability. Solar Energy. 218: 469-491.

https://doi.org/10.1016/j.solener.2021.03.005.

Li, G. et al. 2021. Ionic Liquid Stabilizing High‐Efficiency Tin Halide Perovskite Solar Cells. Advanced Energy Materials. 11(32): 2101539.

https://doi.org/10.1002/aenm.202101539.

Aftab, A. and M. I. Ahmad. 2021. A Review of Stability and Progress in Tin Halide Perovskite Solar Cell. Solar Energy. 216: 26-47.

https://doi.org/10.1016/j.solener.2020.12.065.

Wang, D., M. Wright, N. K. Elumalai, and A. Uddin. 2016. Stability of Perovskite Solar Cells. Solar Energy Materials and Solar Cells. 147: 255-275.

https://doi.org/10.1016/j.solmat.2015.12.025.

Ma, S., G. Yuan, Y. Zhang, N. Yang, Y. Li, and Q. Chen. 2022. Development of Encapsulation Strategies Towards the Commercialization of Perovskite Solar Cells. Energy & Environmental Science. 15(1): 13-55.

https://doi.org/10.1039/D1EE02882K.

Dunfield, S. P. et al. 2020. From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials. 10(26): 1904054.

https://doi.org/10.1002/aenm.201904054.

Park, B. W. and S. I. Seok. 2019. Intrinsic Instability of Inorganic-Organic Hybrid Halide Perovskite Materials. Adv Mater. 31(20): e1805337.

https://doi.org/10.1002/adma.201805337.

Li, C. et al. 2018. Thermionic Emission-Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solution-Processed Perovskites. Advanced Energy Materials. 8(36): 1801954.

https://doi.org/10.1002/aenm.201801954.

Berhe, T. A. et al. 2016. Organometal Halide Perovskite Solar Cells: Degradation and Stability. Energy & Environmental Science. 9(2): 323-356.

https://doi.org/10.1039/C5EE02733K.

Gwisu Kim, H. M., Kyoung Su Lee, Do Yoon Lee, So Me Yoon, Sang Il Seok. 2020. Impact of Strain Relaxation on Performance of a-formamidinium Lead Iodide Perovskite Solar Cells. 108-112.

https://doi.org/10.1126/science.abc4417.

Shao, S. and M. A. Loi. 2019. The Role of the Interfaces in Perovskite Solar Cells. Advanced Materials Interfaces. 7(1): 1901469.

https://doi.org/10.1002/admi.201901469.

Fu, Z. et al. 2019. Encapsulation of Printable Mesoscopic Perovskite Solar Cells Enables High Temperature and Long‐Term Outdoor Stability. Advanced Functional Materials. 29(16): 1809129.

https://doi.org/10.1002/adfm.201809129.

Qiu, L., L. K. Ono, and Y. Qi. 2018. Advances and Challenges to the Commercialization of Organic-inorganic Halide Perovskite Solar Cell Technology. Materials Today Energy. 7: 169-189.

https://doi.org/10.1016/j.mtener.2017.09.008.

Holzhey, P. and M. Saliba. 2018. A Full Overview of International Standards Assessing the Long-term Stability of Perovskite Solar Cells. Journal of Materials Chemistry A. 6(44): 21794-21808.

https://doi.org/10.1039/C8TA06950F.

Cheacharoen, R., N. Rolston, D. Harwood, K. A. Bush, R. H. Dauskardt, and M. D. McGehee. 2018. Design and Understanding of Encapsulated Perovskite Solar Cells to Withstand Temperature Cycling. Energy & Environmental Science. 11(1): 144-150.

https://doi.org/10.1039/C7EE02564E.

Akman, E., A. E. Shalan, F. Sadegh, and S. Akin. 2021. Moisture-Resistant FAPbI3 Perovskite Solar Cell with 22.25 % Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation. ChemSusChem. 14(4): 1176-1183.

https://doi.org/10.1002/cssc.202002707.

Diau, E. W.-G., E. Jokar, and M. Rameez. 2019. Strategies to Improve Performance and Stability for Tin-Based Perovskite Solar Cells. ACS Energy Letters. 4(8): 1930-1937.

https://doi.org/10.1021/acsenergylett.9b01179.

Peng, L. and W. Xie. 2020. Theoretical and Experimental Investigations on the Bulk Photovoltaic Effect in Lead-free Perovskites MASnI3 and FASnI3. RSC Adv. 10(25): 14679-14688.

https://doi.org/10.1039/D0RA02584D.

Wu, T. et al. 2022. Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nanomicro Lett. 14(1): 99.

https://doi.org/10.1007/s40820-022-00842-4.

Wang, M. et al. 2021. Lead-Free Perovskite Materials for Solar Cells. Nanomicro Lett. 13(1): 62.

https://doi.org/10.1007/s40820-020-00578-z.

Crespo, C. T. 2020. Contributions to Optical Properties and Efficiencies of Methyl-Ammonium Lead, Tin, and Germanium Iodide Perovskites. The Journal of Physical Chemistry C. 124(23): 12305-12310.

https://doi.org/10.1021/acs.jpcc.0c02836.

Dualeh, A., N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel. 2014. Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells. Advanced Functional Materials. 24(21): 3250-3258.

https://doi.org/10.1002/adfm.201304022.

Chen, L.-C., C.-C. Chen, J.-C. Chen, and C.-G. Wu. 2015. Annealing Effects on High-performance CH 3 NH 3 PbI 3 Perovskite Solar Cells Prepared by Solution-process. Solar Energy. 122: 1047-1051.

https://doi.org/10.1016/j.solener.2015.10.019.

Hsu, H.-Y., L. Ji, M. Du, J. Zhao, E. T. Yu, and A. J. Bard. 2016. Optimization of Lead-free Organic-inorganic Tin(II) Halide Perovskite Semiconductors by Scanning Electrochemical Microscopy. Electrochimica Acta. 220: 205-210.

https://doi.org/10.1016/j.electacta.2016.10.049.

Fujihara, T., S. Terakawa, T. Matsushima, C. Qin, M. Yahiro, and C. Adachi. 2017. Fabrication of High Coverage MASnI3 Perovskite Films for Stable, Planar Heterojunction Solar Cells. Journal of Materials Chemistry C. 5(5): 1121-1127.

https://doi.org/10.1039/C6TC05069G.

Ke, J.-C., Y.-H. Wang, K.-L. Chen, and C.-J. Huang. 2017. Effect of Temperature Annealing Treatments and Acceptors in CH3NH3PbI3 Perovskite Solar Cell Fabrication. Journal of Alloys and Compounds. 695: 2453-2457.

https://doi.org/10.1016/j.jallcom.2016.11.143.

Zheng, Y.-Z. et al. 2017. Effects of Precursor Concentration and Annealing Temperature on CH3NH3PbI3 Film Crystallization and Photovoltaic Performance. Journal of Physics and Chemistry of Solids. 107: 55-61.

https://doi.org/10.1016/j.jpcs.2017.03.020.

Tzounis, L., T. Stergiopoulos, A. Zachariadis, C. Gravalidis, A. Laskarakis, and S. Logothetidis. 2017. Perovskite Solar Cells from Small Scale Spin Coating Process Towards Roll-to-roll Printing: Optical and Morphological studies. Materials Today: Proceedings. 4(4): 5082-5089.

https://doi.org/10.1016/j.matpr.2017.04.117.

Zheng, J. et al. 2017. Spin-coating Free Fabrication for Highly Efficient Perovskite Solar Cells. Solar Energy Materials and Solar Cells. 168: 165-171.

https://doi.org/10.1016/j.solmat.2017.04.029.

Chen, L. C. et al. 2018. Effect of Different CH3NH3PbI3 Morphologies on Photovoltaic Properties of Perovskite Solar Cells. Nanoscale Res Lett. 13(1): 140.

https://doi.org/10.1186/s11671-018-2556-8.

Li, F. et al. 2019. A Cation-Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Angew Chem Int Ed Engl. 58(20): 6688-6692.

https://doi.org/10.1002/anie.201902418.

Mishra, A. et al. 2019. Effect of Annealing Temperature on the Performance of Printable Carbon Electrodes for Perovskite Solar Cellst. Organic Electronics. 65: 375-380.

https://doi.org/10.1016/j.orgel.2018.11.046.

Liu, X. et al. 2019. Boosting the Efficiency of Carbon-based Planar CsPbBr3 Perovskite Solar Cells by a Modified Multistep Spin-coating Technique and Interface Engineering. Nano Energy. 56: 184-195.

https://doi.org/10.1016/j.nanoen.2018.11.053.

Kar, M., R. Sarkar, S. Pal, and P. Sarkar. 2020. Lead Free Two-Dimensional Mixed Tin and Germanium Halide Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C. 125(1): 74-81.

https://doi.org/10.1021/acs.jpcc.0c08164.

Ahmed, S., F. Jannat, M. A. K. Khan, and M. A. Alim. 2021. Numerical Development of Eco-friendly Cs2TiBr6 based Perovskite Solar Cell with All-inorganic Charge Transport Materials via SCAPS-1D. Optik. 225: 165765.

https://doi.org/10.1016/j.ijleo.2020.165765.

Moiz, S. A., A. N. M. Alahmadi, and A. J. Aljohani. 2021. Design of a Novel Lead-Free Perovskite Solar Cell for 17.83% Efficiency. IEEE Access. 9: 54254-54263.

https://doi.org/10.1109/ACCESS.2021.3070112.

Downloads

Published

2022-09-25

Issue

Section

Science and Engineering

How to Cite

A MINI-REVIEW OF RECENT STUDIES ON LEAD AND LEAD-FREE PEROVSKITE MATERIALS FOR SOLAR CELLS APPLICATION AND THEIR ISSUES. (2022). Jurnal Teknologi, 84(6), 135-146. https://doi.org/10.11113/jurnalteknologi.v84.18208