EXAMINATION OF ADULTERATED COCONUT OIL BY FIBER OPTICS DISPLACEMENT SENSOR USING LATERAL OFFSET APPROACH

Authors

  • Hazura Haroon Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Siti Noraminah Nordin Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Hazli Rafis Abdul Rahim Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Thanigai Anbalagan Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Maisara Othman Dept. of Electronic Engineering Faculty of Electrical & Electronic Engineering (FKEE) Universiti Tun Hussein Onn Malaysia (UTHM) Batu Pahat, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18211

Keywords:

Fiber optic sensor, oil adulteration, single-mode fiber, lateral offset, sensing device

Abstract

A single-mode fiber (SMF) sensor for detecting coconut oil adulteration is proposed. Coconut oil is commonly used in cooking but health problems are caused by its adulteration. The lateral offset approach to the SMF-SMF displacement sensor was employed in this experiment to analyze the sensing responses of adulterant concentrations in coconut oil. The offset distances of the sensing probe were set at 6.47 µm, 11.57 µm, and 14.64 µm. Pure coconut oil, paraffin oil, and palm oil have an initial refractive index of 1.4481, 1.4585, and 1.4634, respectively. Upon completion, the highest sensitivity was observed at a lateral offset distance of 14.64 µm. These values were 0.286 dBm/mol for palm oil detection and 0.045 dBm/mol for paraffin oil detection. The findings of these experiments also showed that the larger the offset distance, the greater the sensitivity of the fiber sensor.

References

Y.-J. Rao. 1999. Recent Progress in Applications of In-fibre Bragg Grating Sensors. Opt. Lasers Eng. 31(4): 297-324.

H. Haroon and S. S. Khalid. 2017. An Overview of Optical Fiber Sensor Applications in Liquid Concentration Measurements. J. Adv. Rev. Sci. Res. 36(1): 1-7.

N. M. Razali, A. N. Mazlan, M. F. Salebi, H. Mohamed, and S. Ambran. 2019. Optical Fiber Tip Sensor for Glucose-adulterated Honey Detection. TELKOMNIKA. 17(5): 2445-2450.

A. R. Hanim, H. Hazura, A. S. M. Zain, S. K. Idris…2018. Modal Interferometer Structures and Splicing Techniques of Fiber Optic Sensor. J. Telecommun. Electron. Comput. Eng. 10(2-2): 23-27.

H. Haroon et al. 2018. Design and Implementation of Fibre Optic Sensor for Soil Moisture Detection. J. Telecommun. Electron. Comput. Eng. 10(2-5): 131-134.

Q. Zhang, J. Zhou, J. Chen, and X. Tan. 2012. Single-mode Fiber Refractive Index Sensor with Large Lateral Offset Fusion Splicing between Two Abrupt Tapers. Opt. Eng. 51(9): 090502–1.

F. Yu, P. Xue, and J. Zheng. 2019. Study of a Large Lateral Core-offset In-line fiber Modal Interferometer for Refractive Index Sensing. Opt. Fiber Technol. 47(September 2018): 107-112.

G. Yin, S. Lou, and H. Zou. 2013. Refractive Index Sensor with Asymmetrical Fiber Mach--Zehnder Interferometer based on Concatenating Single-mode Abrupt Taper and Core-offset Section. Opt. & Laser Technol. 45: 294-300.

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan. 2005. Fibre Optic Sensor for the Detection of Adulterant Traces in Coconut Oil. Meas. Sci. Technol. 16(11): 2247.

V. Raj, M. S. Swapna, and S. Sankararaman. 2018. Nondestructive Radiative Evaluation of Adulteration in Coconut Oil. Eur. Phys. J. Plus. 133(12): 1-10.

Amit, R. Jamwal, S. Kumari, A. S. Dhaulaniya, B. Balan, and D. K. Singh. 2020. Application of ATR-FTIR Spectroscopy along with Regression Modelling for the Detection of Adulteration of Virgin Coconut Oil with Paraffin Oil. Lwt. 118(October 2019): 108754.

T. M. Libish et al. 2011. Detection and Analysis of Paraffin Oil Adulteration in Coconut Oil using Fiber Optic Long Period Grating Sensor. Optik (Stuttg). 122(21): 1939-1942.

I. A. for Research on Cancer. 2012. A Review of Human Carcinogens. F. Chemical Agents and Related Occupations: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.

T. M. Libish, J. Linesh, P. Biswas, S. Bandyopadhyay, K. Dasgupta, and P. Radhakrishnan. 2010. Fiber Optic Long Period Grating based Sensor for Coconut Oil Adulteration Detection. Sensors & Transducers. 114(3): 102.

P. Radhakrishnan. 2010. Sensors & Transducers Fiber Optic Long Period Grating Based Sensor for Coconut Oil. Sensors & Transducers Journal. 114(3): 102-111.

M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan. 2005. Fibre Optic Sensor for the Detection of Adulterant Traces in Coconut Oil. Meas. Sci. Technol. 16(11): 2247-2250.

H. Haroon, S. N. Nordin, T. Anbalagan, and M. Othman. 2022. Edible Oils Adulteration Analysis by Fiber Optic Multimode Displacement Sensor. 16(1): 36-40.

L. A. Reith. 1993. Issues Relating to the Performance of Optical Connectors and Splices. Passive Fiber Optic Components and Their Reliability. 1973: 294-305.

H. Niu et al. 2021. Optical Fiber Sensors Based on Core-Offset Structure: A Review. IEEE Sens. J. 21(20): 22388-22401.

J. C. Palais. 1988. Fiber Optic Communications. Prentice Hall Englewood Cliffs.

N. F. Baharin, A. I. Azmi, A. S. Abdullah, and M. Y. Mohd Noor. 2018. Refractive Index Sensor Based on Lateral-offset of Coreless Silica Interferometer. Opt. Laser Technol. 99: 396-401.

W. A. S. and M. Nofal. 2021. Review of Some Adulteration Detection Techniques of Edible Oils. J. Sci. Food Agric. 101(3): 811-819.

H. Haroon, A. Kareem…2019. Statistical Analysis on Impact of Temperature to Fiber Bragg Grating Sensor Performance. Optoelectron. Adv. Mater. Commun. 13(5-6): 290-294.

S. Xu, H. Chen, and W. Feng. 2021. Fiber-optic Curvature and Temperature Sensor based on the Lateral-offset Spliced SMF-FCF-SMF Interference Structure. Opt. Laser Technol. 141(April): 107174.

A. C. M. R. Pandiselvam, M. R. Manikantan, S. V. Ramesh, S. Beegum. 2019. Adulteration in Coconut and Virgin Coconut Oil-Implications and Detection Methods. Indian Coconut J. Nov: 19-22.

Published

2022-07-29

How to Cite

Haroon, H., Nordin, S. N. ., Abdul Rahim, H. R. ., Anbalagan, T. ., & Othman, M. . (2022). EXAMINATION OF ADULTERATED COCONUT OIL BY FIBER OPTICS DISPLACEMENT SENSOR USING LATERAL OFFSET APPROACH . Jurnal Teknologi, 84(5). https://doi.org/10.11113/jurnalteknologi.v84.18211

Issue

Section

Science and Engineering