PRODUCTION OF CELLULOSE NANOCRYSTALS FROM OIL PALM EMPTY FRUIT BUNCH AND PINEAPPLE LEAF FIBRE USING DOUBLE OXIDATION APPROACH

Authors

  • Noorasikin Samat Department of Manufacturing and Materials Engineering, IIUM, Jalan Gombak, 53100, Gombak, Kuala Lumpur, Malaysia https://orcid.org/0000-0003-2922-7498
  • Raimi Fariz Nasrudin Department of Manufacturing and Materials Engineering, IIUM, Jalan Gombak, 53100, Gombak, Kuala Lumpur, Malaysia
  • Nur Afiqah Mokhtar Department of Manufacturing and Materials Engineering, IIUM, Jalan Gombak, 53100, Gombak, Kuala Lumpur, Malaysia
  • Norzita Yacob Radiation Processing Technology Division, Malaysia Nuclear Agency, 43000, Kajang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18215

Keywords:

Nanocellulose, ammonium persulfate oxidation, bleaching, crystallinity index, thermal stability

Abstract

Cellulose nanocrystasl (CNC) were produced from oil palm empty fruit bunch (EFB) and pineapple leaf fibre (PALF) using double oxidation treatment comprising bleaching and ammonium persulfate (APS) treatments. Different techniques were used to characterise the extracted CNC. Fourier transform infrared (FTIR) spectra confirmed the formation of carboxyl group and decreasing fractions of non-cellulosic components. The CNCs from both fibres show a better crystallinity index than the raw fibre, and the CNCs also conform to the crystalline structure of cellulose I. Morphology analysis using transmission electron microscopy (TEM) reveals that the CNCs of EFB and PALF have different shapes and dimensions. Spherical EFB had a 16.33 ± 8.5 nm diameter, while rod-like PALF had 13.07 ± 6.15 nm and 78.67 ± 38.07 nm diameter and length. However, the thermal stability of both CNCs decreased slightly. Hence, the findings indicate that the double oxidation approach using agricultural biomass wastes can work as an alternative route for the preparation of CNCs.

References

Xie, H., Du, H., Yang, X. and Si, C. 2018. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science. 2018: 7923068.

DOI: https://doi.org/10.1155/2018/7923068.

Yang, H., Zhang, Y., Kato, R. and Rowan, S. J. 2019. Preparation of Cellulose Nanofibers from Miscanthus X. Giganteus by Ammonium Persulfate Oxidation. Carbohydrate Polymers. 212: 30-39.

DOI: https://doi.org/10.1016/j.carbpol.2019.02.008.

Li, Y., Liu, X., Nie, X., Yang, W., Wang, Y., Yu, R. and Shui, J. 2019. Multifunctional Organic-inorganic Hybrid Aerogel for Self-cleaning, Heat-insulating, and Highly Efficient Microwave Absorbing Material. Advanced Functional Materials. 29: 1807624

DOI: https://doi.org/10.1002/adfm.201807624.

Thai, Q. B., Nguyen, S. T., Ho, D. K., Tran, T. D., Huynh, D. M., Do, N. H. N.., Luu, T. P., Le, P. K., Le, D. K., Phan-Thien, N. and Duong, H. M. 2020. Cellulose-based Aerogels from Sugarcane Bagasse for Oil Spill-cleaning and Heat Insulation Applications, Carbohydrate Polymers. 228: 115365.

DOI: https://doi.org/10.1016/j.carbpol.2019.115365.

Chen, W., Yu, H., Lee, S. Y., Wei, T., Li, J. and Fan, Z. 2018. Nanocellulose: A Promising Nanomaterial for Advanced Electrochemical Energy Storage. Chemical Society Reviews. 47: 2837-2872.

Shao, L., Cao, Y., Li, Z., Hu, W., Li, S. and Lu, L. 2018. Dual Responsive Aerogel Made from Thermo/Ph Sensitive Graft Copolymer Alginate-G-P(NIPAM-Co-NHMAM) for Drug-Controlled Release. International Journal Biological Macromolecules. 114: 1338-1344.

DOI: https://doi.org/10.1016/j.ijbiomac.2018.03.166.

Lazim, N. H. and Samat, N. 2019. The Influence of Irradiated Recycled Polypropylene Compatibilizer on the Impact Fracture Behavior of Recycled Polypropylene / Microcrystalline Cellulose Composites. Polymer Composites. 41: E24-E34.

DOI: https://doi.org/10.1002/pc.24430.

Awanis, J., Anis Sofia, S. and Samat, N. 2012. Effect of Coupling Agent on Mechanical Properties of Composite from Microcrystalline Cellulose and Recycled Polypropylene. Advanced Material Research. 576: 390-393.

Long, L. Y., Wang, Y-X. and Wang, Y-Z. 2018. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers. 10(6): 623.

DOI: https://doi.org/10.3390/polym10060623.

Ritchie, H. and Roser, M. 2021. Palm Oil - Our World in Data. https://ourworldindata.org/palm-oil.

Shahbandeh, M. 2019. Leading Countries in Pineapple Production Worldwide.

https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries.

De France, K., Hoare, T. and Cranston, E. D. 2017. Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials. 29(11): 4609-4631.

DOI: https://doi.org/10.1021/acs.chemmater.7b00531.

Rohaizu, R. and Wanrosli, W. D. 2017. Sono-assisted TEMPO Oxidation of Oil Palm Lignocellulosic Biomass for Isolation of Nanocrystalline Cellulose. Ultrasonics Sonochemistry. 34: 631-639.

Mawanto, Maulana M. I., Febrianto, F., Wistara, N. J., Nikmatin, S., Masruchin, N., Zaini, L. H., Lee, S. H. and Kim, N. H. 2021. Effect of Oxidation Time on the Properties of Cellulose Nanocrystals Prepared from Balsa and Kapok Fibers Using Ammonium Persulfate. Polymers. 13: 1894.

DOI: https://doi.org/10.3390/polym13111894.

Gabriel, T., Belete, A., Hause, G., Neubert, N. H. H. and Gebre-Mariam, T. 2021 Isolation and Characterization of Cellulose Nanocrystals from Different Lignocellulosic Residues: A Comparative Study. Journal of Polymers and the Environment. 29: 2964-2977.

DOI: https://doi.org/10.1007/s10924-021-02089-3.

Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., and Wiesenborn, D. P. 2013. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces. 5(8): 2999-3009.

Niu, F., Li, M., Huang, Q., Zhang, X., Pan, W., Yang, J. and Li, J. 2017. The Characteristic and Dispersion Stability of Nanocellulose Produced by Mixed Acid Hydrolysis and Ultrasonic Assistance. Carbohydrate Polymers. 165: 197-204.

DOI: https://doi.org/10.1016/j.carbpol.2017.02.048.

Jiang, F. and Hsieh, Y. L. 2013. Chemically and Mechanically Isolated Nanocellulose and Their Self-Assembled Structures. Carbohydrate Polymers. 95: 32-40.

DOI: https://doi.org/10.1016/j.carbpol.2013.02.022.

Gan, P. G., Sam, S. T., Abdullah, M. F., Omar, M. F. and Tan, L. S. 2020. An Alkaline Deep Eutectic Solvent Based on Potassium Carbonate and Glycerol as Pretreatment for the Isolation of Cellulose Nanocrystals from Empty Fruit Bunch. BioResources. 15: 1154-1170.

Bashar, M. M., Zhu, H., Yamamoto, S. and Mitsuishi, M. 2019. Highly Carboxylated and Crystalline Cellulose Nanocrystals from Jute Fiber by Facile Ammonium Persulfate Oxidation. Cellulose. 26: 3671-3684.

DOI: https://doi.org/10.1007/s10570-019-02363-7.

Leung, A. C. W., Hrapovic, S., Lam, E., Liu, Y., Male, K. B., Khaled, A. M. and Luong, J. H. T. 2011. Characteristics and Properties of Carboxylated Cellulose Nanocrystals Prepared from a Novel One‐Step Procedure. Small. 7(3): 302-305.

Haniffa, M. A. C. M., Ching, Y. C., Chuah, C. H., Kuan, Y. C., Nik Nazri, Abdullah, L. C., and Nai-Shang, L. 2017. Effect of TEMPO-Oxidization and Rapid Cooling on Thermo-Structural Properties of Nanocellulose. Carbohydrate Polymers. 173: 91-99.

DOI: https://doi.org/10.1016/j.carbpol.2017.05.084.

Oun, A. A. and Jong-Whan, R. 2017. Characterization of Carboxymethyl Cellulose-Based Nanocomposite Films Reinforced with Oxidized Nanocellulose Isolated Using Ammonium Persulfate Method. Carbohydrate Polymers. 174: 484–492.

DOI: http://doi.org/10.1016/j.carbpol.2017.06.121,

Mascheroni E., Rampazzo R., Ortenzi M.A., Piva G., Bonetti S. and Piergiovanni L. 2016. Comparison of Cellulose Nanocrystals Obtained by Sulfuric Acid Hydrolysis and Ammonium Persulfate, To Be Used As Coating on Flexible Food-Packaging Materials. Cellulose. 23: 779–793.

DOI: http://doi.org/10.1007/s10570-015-0853-2

Cheng M., Qin Z., Liu Y., Qin Y., Li T., Chen L. and Zhu M. 2014. Efficient Extraction of Carboxylated Spherical Cellulose Nanocrystals with Narrow Distribution Through Hydrolysis of Lyocell Fibers By Using Ammonium Persulfate As An Oxidant. Journal of Materials Chemistry A. 2(1): 251-258.

Yang H., Zhang Y., Kato R. and Rowan S.J. 2019. Preparation of Cellulose Nanofibers from Miscanthus X. Giganteus By Ammonium Persulfate Oxidation. Carbohydrate Polymers. 212: 30–39.

DOI: https://doi.org/10.1016/j.carbpol.2019.02.008.

Goh K.Y., Ching Y.C., Chuah C.H., Luqman C.A. and Liou N.S. 2016. Individualization of Microfibrillated Celluloses From Oil Palm Empty Fruit Bunch: Comparative Studies Between Acid Hydrolysis and Ammonium Persulfate Oxidation. Cellulose. 23(1): 379–390.

DOI: https://doi.org/10.1007/s10570-015-0812-y

Filipova I., Fridrihsone V., Cabulis U., and Berzins A. 2018. Synthesis of Nanofibrillated Cellulose by Combined Ammonium Persulphate Treatment with Ultrasound and Mechanical Processing. Nanomaterials. 8(640): 1-11.

DOI: https://doi.org/10.1007/s10570-020-03089-7.

Du, C., Liu, M., Li, B., Li, H., Meng Q. and Zhan, H. 2016. Cellulose Nanocrystals Prepared by Persulfate One-Step Oxidation of Bleached Bagasse Pulp. Bioresources. 11(2): 4017-4024.

Zhang, H., Chen, Y., Wang, S., Ma, L., Yu, Y., Dai, H. and Zhang, Y. 2020. Extraction and Comparison of Cellulose Nanocrystal from Lemon (Citrus Limon) Seeds Using Sulfuric Acid Hydrolysis and Oxidation Methods. Carbohydrate Polymers. 238: 116180.

DOI: https://doi.org/10.1016/j.carbpol.2020.116180.

Dai, H., Ou, S., Huang, Y. and Huang, H. 2018. Utilization of Pineapple Peel for Production of Nanocellulose and Film Application. Cellulose. 25: 1743-1756.

DOI: http://doi.org/10.11113/jt.v79.9987.

Fareez, I. A., Ain, I., Hanif, W. Y., Amira, M. R., Ainil, H. J. and Fauziah, A. A. 2018. Characteristics of Cellulose Extracted from Josapine Pineapple Leaf, Fibre After Alkali Treatment Followed by Extensive Bleaching. Cellulose. 25: 4407-4421.

DOI: http://doi.org/10.1007/s10570-018-1878-0.

Ching, Y. C. and Ng, T. S. 2014. Effect of Preparation Conditions on Cellulose from Oil Palm Empty Fruit Bunch Fiber. BioResources. 9(4): 6373-6385.

Zhang, K., Sun, P., Liu, H., Shang, S., Song, J., and Wang, D. 2016. Extraction and Comparison of Carboxylated Cellulose Nanocrystals from Bleached Sugarcane Bagasse Pulp using Two Different Oxidation Methods. Carbohydrate Polymers. 138: 237-243.

Hu, Y., Tang, L., Lu, Q., Wang, S., Chen, X. and Huang, B. 2014. Preparation of Cellulose Nanocrystals and Carboxylated Cellulose Nanocrystals from Borer Powder of Bamboo. Cellulose. 21(3): 1611-1618.

DOI: https://doi.org/10.1007/s10570-014-0236-0.

Azrina, Z. A. Z., Beg, M. D. H., Rosli, M. Y., Ramli, R., Junadi, N. and Alam, M. A. K. M. 2017. Spherical Nanocrystalline Cellulose (NCC) from Oil Palm Empty Fruit Bunch Pulp Via Ultrasound Assisted Hydrolysis. Carbohydrate Polymers. 162: 115-120.

DOI: https:// doi.org/10.1016/j.carbpol.2017.01.035.

Burhani, D. and Septevani, A. A. 2018. Isolation of Nanocellulose from Oil Palm Empty Fruit Bunches Using Strong Acid Hydrolysis. AIP Conference Proceedings. 2024: 020005.

DOI: https://doi.org/10.1063/1.5064291.

Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K., Faria, M., Thomas, S. and Pothan, L. A. 2015. Utilization of Various Lignocellulosic Biomass for the Production of Nanocellulose: A Comparative Study. Cellulose. 22: 1075-1090.

DOI: https://doi.org/10.1007/s10570-015-0554-x.

Ravindrana, L., Sreekala, M. S. and Thomas, S. 2019. Novel Processing Parameters for the Extraction of Cellulose Nanofibres (CNF) from Environmentally Benign Pineapple Leaf Fibres (PALF): Structure-Property Relationships. International Journal of Biological Macromolecules. 131: 858-870.

DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.134.

Mahardika, M., Abral, H., Kasim, A., Arief, S. and Asrofi, M. 2018. Production of Nanocellulose from Pineapple Leaf, Fibers Via High-Shear Homogenization and Ultrasonication. Fibers. 6(2): 28.

DOI: https://doi.org/10.3390/fib6020028.

Hall, M., Bansal, P., Lee J. H., Realff, M. J. and Bommarius, A. S. 2010. Cellulose Crystallinity – A Key Predictor of the Enzymatic Hydrolysis Rate. The FEBS Journal. 277: 1571-1582.

Grierer, J. 1986. Chemistry of Delignification. Wood Science and Technology. 20(1): 1-33.

Sofla, M. R. K., Brown, R. J., Tsuzuki, T. and Rainey, T. J. 2016. A Comparison of Cellulose Nanocrystal and Cellulose Nanofibers Extracted from Bagasse Using Acid and Ball Milling Methods. Advances in Natural Science: Nanoscience and Nanotechnology. 7: 035004.

Li, Y., Liu, X., Nie, X., Yang, W., Wang, Y., Yu, R. and Shui, J. 2019. Multifunctional Organic-inorganic Hybrid Aerogel for Self-cleaning, Heat-Insulating, and Highly Efficient Microwave Absorbing Material. Advanced Functional Materials. 29(10): 1807624.

DOI: https://doi.org/10.1002/adfm.201807624.

Larraza, I., Vadillo, J., Santamaria-Echart, A., Tejado, A., Azpeitia, M., Vesga, E., Orue, A., Saralegi, A., Arbelaiz, A. and Eceiza, A. 2020. The Effect of the Carboxylation Degree on Cellulose Nanofibers and Waterborne Polyurethane/Cellulose Nanofiber Nanocomposites Properties. Polymer Degradation and Stability. 173: 109084.

DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109084.

Published

2022-07-26

How to Cite

Samat, N., Nasrudin, R. F. ., Mokhtar, N. A. ., & Yacob, N. . (2022). PRODUCTION OF CELLULOSE NANOCRYSTALS FROM OIL PALM EMPTY FRUIT BUNCH AND PINEAPPLE LEAF FIBRE USING DOUBLE OXIDATION APPROACH. Jurnal Teknologi, 84(5). https://doi.org/10.11113/jurnalteknologi.v84.18215

Issue

Section

Science and Engineering