Ramalan Cirian Reologi Campuran Berasfalt Menggunakan Rangkaian Saraf Tiruan

Authors

  • Asmah Hamim Dept. of Civil & Structural Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Sentot Hardwiyono Dept. of Civil Engineering, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
  • Ahmed El-Shafie Dept. of Civil & Structural Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Nur Izzi Md. Yusoff Dept. of Civil & Structural Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Mohd. Rosli Hainin Fac. of Civil Engineering and Construction Research Alliance, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v65.1822

Keywords:

rangkaian saraf tiruan, rangkaian saraf suap-depan pelbagai lapisan, rangkaian fungsi asas jejarian, modulus kompleks (E*) dan sudut fasa (δ)

Abstract

References

Xiao, F. & Amirkhanian, S.N. 2009. Artificial Neural Network Approach Toestimating Stiffness Behavior of Rubberized Asphalt Concrete Containingreclaimed Asphalt Pavement. Journal of Transportation Enginering. DOI:10.1061/(ASCE)TE.1943–5436.0000014.

Federal Highway Administration. 2000. Temperature Predictions Andadjustment Factors for Asphalt Pavement. FHWA-RD-98-085.

Giuliana, G., Nicolosi, V. & Festa, B. 2012. Predictive Formulas of Complex Modulus for High Air Void Content Mixes. Transportation Research Board 91stAnnual Meeting.

Epps, A., Harvey, J.T., Kim, Y.R. & Roque, R. 2002. Structural Requirements of Bituminous Paving Mixtures. Transportation Research Board –Transportation in the New Millennium.

Ceylan, H., Gopalakrishnan, K. & Kim, S. 2009. Looking to the Future: Thenext-Generation Hot Mix Asphalt Dynamic Modulus Prediction Models. International Journal of Pavement Engineering. 10(5): 341–352.

Zeghal, M. 2008. Visco-elastic Portrayal of Bituminous Materials: Artificial Neural Network Approach. Proceedings of GeoCongress 2008. NewOrleans, Louisiana, 9–12 Mac.

Garcia, G. & Thompson, M. 2007. HMA Dynamic Modulus Predictive Models: A Review. Illinois Center for Transportation, University of Illinois. Report No.FHWA-ICT-07-005.

Freeman, J. A. 1994. Simulating Neural Networks with Mathematica. USA: Addison-Wasley Publishing Company, Inc.

Tasdemir, Y. 2009. Artificial Neural Network for Predicting Low Temperature Performances of Modified Asphalt Mixtures. Indian Journal of Engineering & Materials Sciences. 16: 237–244.

Hagan, M. T., Demuth, H. B. & Beale, M. H. 1996. Neural network Design. PWS Publishing. ISBN: 0-9717321-0-8.

Hassan, H. F. 2010. Artificial Neural Network Technique for Rainfall Forecasting Applied to Alexandria, Egypt. Tesis Master, Jabatan Kejuruteraan Awam & Struktur, Universiti Kebangsaan Malaysia.

Svozil, D., KvasniÄka, V. & Pospíchal, J. 1997. Introduction to Multi-layer Feed-forward Neural Networks. Chemometrics and Intelligent Laboratory Systems. 39(1997): 43–62.

Sulaiman, M. & El-Shafie, A., Karim, O. & Basri, H. 2011. Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network. Water Resources Management. DOI: 10.1007/s11269-011-9824-z.

Hornik, K., Stinchcombe, M. & White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2: 359–366.

Leshno, M., Lin, V. Y., Pinkus, A. &Schocken, S. 1993. Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function. Neural Networks. 6(6): 861–867.

Saltan, M., Tiğdemir, M. & Karaşahin, M. 2002. Artificial Neural Network Application for Flexible Pavement Thickness Modeling. Turkish Journal Engineering & Environmental Sciences. 26: 243–248.

Lin, G. & Chen, L. 2004. A non-linear Rainfall-runoff Model Using Radial Basis Function Network. Journal of Hydrology. 289: 1–8.

Jain, A. K., Mao, J. & Mohiuddin, K. M. 1996. Artificial Neural Networks: A Tutorial. Computer–Special Issue: Neural Computing: Companion Issue to Spring1996 IEEE Computational Science & Engineering. 29(3): 31–44. DOI: 10.1109/2.485891.

Panas, A., Pantouvakis, J. & Lambropoulos, S. 2012. Non-linear Analysis of Concrete Pavement Construction by the Use of Artificial Neural Networks. Procedia- Social and Behavioral Sciences. 48: 3671–3680.

Huang, S., H, C., Lee, C. & Chang, C. 2005. Application of Neural Network For Selection of Airport Rigid Pavement Maintenance Strategies. Journal of Marine Science and Technology. 13(2): 125–132.

Downloads

Published

2013-10-25

Issue

Section

Science and Engineering

How to Cite

Ramalan Cirian Reologi Campuran Berasfalt Menggunakan Rangkaian Saraf Tiruan. (2013). Jurnal Teknologi (Sciences & Engineering), 65(1). https://doi.org/10.11113/jt.v65.1822