METABOLIC PATHWAY MODIFICATION FOR PRODUCTION OF XYLITOL FROM GLUCOSE IN ESCHERICHIA COLI

Authors

  • Noradilin Abdullah School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Rosli Md Illias School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Low Kheng Oon Malaysia Genome Institute, 43000 Kajang, Selangor, Malaysia
  • Nardiah Rizwana Jaafar School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Norhamiza Mohamad Sukri School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Roshanida Abdul Rahman School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18228

Keywords:

Xylitol, metabolic engineering, glucose, Escherichia coli, single gene

Abstract

Glucose is a cheap and readily available substrate for production of large-scale chemicals. Synthesis of xylitol, a high demand chemical in global market is currently done by using xylose, which contributes to its high operational cost. Studies on production of xylitol from glucose have explored several approaches, from sequential fermentation to multiple and single gene expression. Xylitol-5-phosphate dehydrogenase (XPDH), is an enzyme that enables conversion of glucose to xylitol in a single step fermentation. This study explores conversion of xylitol from glucose in E. coli by the expression of xpdh from Clostridium difficile with modifications in metabolic pathways to enhance xylitol production. The xpdh gene was carried by pACYC-Duet-1 expression vector and induced by the addition of IPTG. Initial screening of E. coli expressing xpdh (NA116) was done by shake-flask fermentation for 24 hours and its metabolites were analyzed by HPLC. NA116 was able to produce 0.273 g/L xylitol from 4.33 g/L consumed glucose in 24 hours. Further metabolic pathway modification to eliminate competing pathways yielded four mutants, NA207 (∆rpiA), NA208 (∆rpiB), NA209 (∆pgi) and NA211 (∆rpi∆Apgi). Screening of mutants for xylitol production showed that highest xylitol production from glucose was achieved by NA211 with almost double the amount of the original strain, 0.585 g/L. This showed successful xylitol conversion from glucose in a single fermentation in E. coli with improved yield through metabolic pathway modification.

References

Bozell, J. J., and Petersen, G. R. 2010. Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—the US Department of Energy’s “Top 10” Revisited. Green Chem. 12(4): 539-554. https://doi.org/ 10.1039/B922014C.

Industry Experts. 2014. Xylitol, A Global Market Overview. Industry Experts. Retrieved January 7, 2018, from https://www.marketresearch.com/ product/sample-8164119.pdf.

Delgado Arcaño, Y., Valmaña García, O. D., Mandelli, D., Carvalho, W. A., and Magalhães Pontes, L. A. 2020. Xylitol: A Review on the Progress and Challenges of Its Production by Chemical Route. Catalysis Today. 344: 2-14. https://doi.org/ 10.1016/j.cattod.2018.07.060.

Hyvönen, L., Koivistoinen, P., and Voirol, F. 1982. Food Technological Evaluation of Xylitol. Advances in Food Research. Cambridge: Academic Press. 28: 373-403.

Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., and Murtaza, M. A. 2015. Xylitol: A Review on Bioproduction, Application, Health Benefits, and Related Safety Issues. Critical Reviews in Food Science and Nutrition. 55(11): 1514-1528. https://doi.org/10.1080/10408398.2012.702288.

Grembecka, M. 2015. Sugar Alcohols—Their Role in the Modern World of Sweeteners: A Review. European Food Research and Technology. 241(1): 1-14. https://doi.org/10.1007/s00217-015-2437-7.

Prakasham, R. S., Rao, R. S., and Hobbs, P. J. 2009. Current Trends in Biotechnological Production of Xylitol and Future Prospects. Current Trends in Biotechnology and Pharmacy. 3(1): 8-36.

Su, B., Wu, M., Lin, J., and Yang, L. 2013. Metabolic Engineering Strategies for improving Xylitol Production from Hemicellulosic Sugars. Biotechnology Letters. 35(11): 1781-1789. https://doi.org/10.1007/s10529-013-1279-2.

Parajó, J. C., Domínguez, H., and Domínguez, J. M. 1998. Biotechnological Production of Xylitol. Part 1: Interest of Xylitol and Fundamentals of Its Biosynthesis. Bioresource Technology. 65(3): 191-201. https://doi.org/10.1016/S0960-8524(98)00038-8.

O’Donnell, K., and Kearsley, M. W. 2012. Sweeteners and Sugar Alternatives in Food Technology. Second Edition. Oxford: Wiley Blackwell. https://doi.org/ 10.1002/9781118373941

Gasmi Benahmed, A., Gasmi, A., Arshad, M., Shanaida, M., Lysiuk, R., Peana, M., … Bjørklund, G. 2020. Health Benefits of Xylitol. Applied Microbiology and Biotechnology. 104(17): 7225-7237. https://doi.org/10.1007/s00253-020-10708-7.

Rafiqul, I. S. M., and Sakinah, A. M. M. 2013. Processes for the Production of Xylitol-A Review. Food Reviews International. 29(2): 127-156. https://doi.org/10.1080/87559129.2012.714434.

Albuquerque, T. L. De, Da Silva, I. J., De MacEdo, G. R., and Rocha, M. V. P. 2014. Biotechnological Production of Xylitol from Lignocellulosic Wastes: A Review. Process Biochemistry. 49(11): 1779-1789. https://doi.org/10.1016/j.procbio.2014.07.010.

Chen, X., Jiang, Z. H., Chen, S., and Qin, W. 2010. Microbial and Bioconversion Production of D-xylitol and Its Detection and Application. International Journal of Biological Sciences. 6(7): 834-844. https://doi.org/10.7150/ijbs.6.834.

Pal, S., Mondal, A. K., and Sahoo, D. K. 2016. Molecular Strategies for Enhancing Microbial Production of Xylitol. Process Biochemistry. 51(7): 809-819. https://doi.org/10.1016/j.procbio.2016.03. 017.

Da Silva, S. S., and Chandel, A. K. 2012. D-Xylitol.)D-Xylitol: Fermentative Production, Application and Commercialization. Heidelberg: Springer https://doi.org/10.1007/978-3-642-31887-0.

Xu, Y., Chi, P., Bilal, M., and Cheng, H. 2019. Biosynthetic Strategies to Produce Xylitol: An Economical Venture. Applied Microbiology and Biotechnology. 103(13): 5143-5160. https://doi.org/ 10.1007/s00253-019-09881-1.

Dhar, K. S., Wendisch, V. F., and Nampoothiri, K. M. 2016. Engineering of Corynebacterium Glutamicum for Xylitol Production from Lignocellulosic Pentose Sugars. Journal of Biotechnology. 230: 63-71. https://doi.org/10.1016/j.jbiotec.2016.05.011.

Qi, Y., Zhang, H., Yun, J., Yang, M., Zhang, G., Xue, Y., … Ran, L. 2017. Biosynthesis of Xylitol from Glucose : Microorganism, Key Enzymes and Genetically Engineered Strains. American Journal of Bioscience and Bioengineering. 5(5): 109-112. https://doi.org/10.11648/j.bio.20170505.13.

Sakakibara, Y., Saha, B. C., and Taylor, P. 2009. Microbial Production of Xylitol from l-arabinose by Metabolically Engineered Escherichia coli. Journal of Bioscience and Bioengineering. 107(5): 506-511. https://doi.org/10.1016/j.jbiosc.2008.12.017.

Zhou, P., Li, S., Xu, H., Feng, X., and Ouyang, P. 2012. Construction and Co-expression of Plasmid Encoding Xylitol Dehydrogenase and a Cofactor Regeneration Enzyme for the Production of Xylitol from d-arabitol. Enzyme and Microbial Technology. 51(2): 119-124. https://doi.org/10.1016/j.enzmictec. 2012.05.002.

Yoon, B. H., Jeon, W. Y., Shim, W. Y., and Kim, J. H. 2011. L-Arabinose Pathway Engineering for Arabitol-free xylitol Production in Candida Tropicalis. Biotechnology Letters. 33(4): 747-753. https:// doi.org/10.1007/s10529-010-0487-2.

Onishi, H., and Suzuki, T. 1969. Microbial Production of Xylitol from Glucose. Applied Microbiology. 18(6): 1031-1035. https://doi.org/10.1016/j.biortech. 2010.10.074.

Qi, X. H., Zhu, J. F., Yun, J. H., Lin, J., Qi, Y. L., Guo, Q., and Xu, H. 2016. Enhanced Xylitol Production: Expression of Xylitol Dehydrogenase from Gluconobacter oxydans and Mixed Culture of Resting Cell. Journal of Bioscience and Bioengineering. 122(3): 257-262. https://doi.org/ 10.1016/j.jbiosc.2016.02.009.

Cheng, H., Lv, J., Wang, H., Wang, B., Li, Z., and Deng, Z. 2014. Genetically Engineered Pichia Pastoris Yeast for Conversion of Glucose to Xylitol by a Single-fermentation Process. Applied Microbiology and Biotechnology. 98(8): 3539-3552. https://doi.org/10.1007/s00253-013-5501-x.

Povelainen, M., and Miasnikov, A. N. 2007. Production of Xylitol by Metabolically Engineered Strains of Bacillus Subtilis. Journal of Biotechnology. 128(1): 24-31. https://doi.org/10.1016/j.jbiotec.2006. 09.008.

Yu, C., Cao, Y., Zou, H., and Xian, M. 2011. Metabolic Engineering of Escherichia coli for Biotechnological Production of High-value Organic Acids and Alcohols. Applied Microbiology and Biotechnology. 89(3): 573-583. https://doi.org/ 10.1007/s00253-010-2970-z.

Wang, C., Pfleger, B. F., and Kim, S. W. 2017. Reassessing Escherichia coli as a Cell Factory for Biofuel Production. Current Opinion in Biotechnology. 45: 92-103. https://doi.org/10.1016/ j.copbio.2017.02.010.

Su, B., Wu, M., Zhang, Z., Lin, J., and Yang, L. 2015. Efficient Production of Xylitol from Hemicellulosic Hydrolysate Using Engineered Escherichia coli. Metabolic Engineering. 31: 112-122. https://doi.org/ 10.1016/j.ymben.2015.07.003.

Li, S., Ye, Z., Moreb, E. A., Hennigan, J. N., Castellanos, D. B., Yang, T., and Lynch, M. D. 2021. Dynamic Control Over Feedback Regulatory Mechanisms Improves NADPH Flux and Xylitol Biosynthesis in Engineered E. coli. Metabolic Engineering. 64(January): 26-40. https://doi.org/ 10.1016/j.ymben.2021.01.005.

Abd Rahman, N. H., Md. Jahim, J., Abdul Munaim, M. S., A. Rahman, R., Fuzi, S. F. Z., and Md. Illias, R. 2020. Immobilization of Recombinant Escherichia coli on Multi-walled Carbon Nanotubes for Xylitol Production. Enzyme and Microbial Technology. 135(August 2019): 109495. https://doi.org/ 10.1016/j.enzmictec.2019.109495.

Jin, L. Q., Xu, W., Yang, B., Liu, Z. Q., and Zheng, Y. G. 2019. Efficient Biosynthesis of Xylitol from Xylose by Coexpression of Xylose Reductase and Glucose Dehydrogenase in Escherichia coli. Applied Biochemistry and Biotechnology. 187(4): 1143-1157. https://doi.org/10.1007/s12010-018-2878-0.

Chin, J. W., and Cirino, P. C. 2011. Improved NADPH Supply for Xylitol Production by Engineered Escherichia coli with Glycolytic Mutations. Biotechnology Progress. 27(2): 333-341. https://doi.org/10.1002/btpr.559.

Kim, S. M., Choi, B. Y., Ryu, Y. S., Jung, S. H., Park, J. M., Kim, G. H., and Lee, S. K. 2015. Simultaneous Utilization of Glucose and Xylose via Novel Mechanisms in Engineered Escherichia coli. Metabolic Engineering. 30: 141-148. https://doi.org/ 10.1016/j.ymben.2015.05.002.

Yamada, Y., Miura, K., Kumagai, T., Hayakawa, C., Miyazaki, S., Matsumoto, A., … Wakamatsu, N. 2001. Molecular Analysis of Japanese Patients with Rett Syndrome: Identification of Five Novel Mutations and Genotype-phenotype Correlation Communicated by Mark H. Paalman Online Citation: Human Mutation, Mutation in Brief #443 (2001) Online http://journals.wil. Human Mutation. 18(3): 253. https://doi.org/10.1002/humu.1186.abs.

Datsenko, K. A., and Wanner, B. L. 2000. One-step Inactivation of chromosomal Genes in Escherichia coli K-12 using PCR Products. Proceedings of the National Academy of Sciences. 97(12): 6640-6645. https://doi.org/10.1073/pnas.120163297.

Yahashi, Y., Horitsu, H., Kawai, K., Suzuki, T., and Takamizawa, K. 1996. Production of Xylitol from D-xylose by Candida Tropicalis: The Effect of D-glucose Feeding. Journal of Fermentation and Bioengineering. 81(2): 148-152. https://doi.org/ 10.1016/0922-338X(96)87593-3.

Li, S., Zhang, J., Xu, H., and Feng, X. 2016. Improved Xylitol Production from d-arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter Oxydans. Journal of Agricultural and Food Chemistry. 64(5): 1144-1150. https://doi.org/10.1021/acs.jafc.5b05509.

Zhang, J., Li, S., Xu, H., Zhou, P., Zhang, L., and Ouyang, P. 2013. Purification of Xylitol Dehydrogenase and Improved Production of Xylitol by Increasing XDH Activity and NADH Supply in Gluconobacter Oxydans. Journal of Agricultural and Food Chemistry. 61(11): 2861-2867. https://doi.org/ 10.1021/jf304983d.

Long, C. P., Gonzalez, J. E., Sandoval, N. R., and Antoniewicz, M. R. 2016. Characterization of Physiological Responses to 22 Gene Knockouts in Escherichia coli Central Carbon Metabolism. Metabolic Engineering. 37: 102-113. https://doi.org/ 10.1016/j.ymben.2016.05.006.

Hua, Q., Yang, C., Baba, T., Mori, H., and Shimizu, K. 2003. Responses of the Central Metabolism in Escherichia coli to Phosphoglucose Isomerase and Glucose-6-Phosphate Dehydrogenase Knockouts. Journal of Bacteriology. 185(24): 7053-7067. https://doi.org/10.1128/JB.185.24.7053-7067.2003.

Nakahigashi, K., Toya, Y., Ishii, N., Soga, T., Hasegawa, M., Watanabe, H., … Tomita, M. 2009. Systematic Phenome Analysis of Escherichia Coli Multiple-knockout Mutants Reveals Hidden Reactions in Central Carbon Metabolism. Molecular Systems Biology. 5(306): 1-14. https://doi.org/10.1038/ msb.2009.65.

Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., … Tomita, M. 2007. Multiple High-throughput Analyses Monitor the Response of E. coli to Perturbations. Science. 316(5824): 593-597. https://doi.org/10.1126/science.1132067.

Bernal, V., Castaño-Cerezo, S., and Cánovas, M. 2016. Acetate Metabolism Regulation in Escherichia coli: Carbon Overflow, Pathogenicity, and Beyond. Applied Microbiology and Biotechnology. 100(21): 8985-9001. https://doi.org/10.1007/s00253-016-7832-x.

Shiloach, J., and Fass, R. 2005. Growing E. coli to high cell density - A Historical Perspective on Method Development. Biotechnology Advances. 23(5): 345-357. https://doi.org/10.1016/ j.biotechadv.2005.04.004.

Cirino, P. C., Chin, J. W., and Ingram, L. O. 2006. Engineering Escherichia coli for Xylitol Production from Glucose-xylose Mixtures. Biotechnology and Bioengineering. 95(6): 1167-1176. https://doi.org/ 10.1002/bit.21082.

Zhao, G., and Winkler, M. E. 1994. An Escherichia coli K-12 tktA tktB Mutant Deficient in Transketolase Activity Requires Pyridoxine (Vitamin B6) as well as the Aromatic Amino Acids and Vitamins for Growth. Journal of Bacteriology. 176(19): 6134-6138. https://doi.org/10.1128/jb.176.19.6134-6138.1994.

Zhang, H., Yun, J., Zabed, H., Yang, M., Zhang, G., Qi, Y., … Qi, X. 2018. Production of Xylitol by Expressing Xylitol Dehydrogenase and Alcohol Dehydrogenase from Gluconobacter Thailandicus and Co-biotransformation of Whole Cells. Bioresource Technology. 257(January): 223-228. https://doi.org/10.1016/j.biortech.2018.02.095.

Qi, X., Zhang, H., Magocha, T. A., An, Y., Yun, J., Yang, M., … Cao, Z. 2017. Improved Xylitol Production by Expressing a Novel D-arabitol Dehydrogenase from Isolated Gluconobacter sp. JX-05 and Co-biotransformation of Whole Cells. Bioresource Technology. 235(March): 50-58. https://doi.org/10.1016/j.biortech.2017.03.107.

Harkki, A. M., Andrey Novomirovich, M., Juha Heikki Antero, A., and Ossi Antero, P. 2004. Manufacture of xylitol Using Recombinant Microbial Hosts. United States Patent No. 6,723,540 (B1). Retrieved from https://www.google.com.my/patents/US6723540.

Downloads

Published

2022-03-31

How to Cite

Abdullah, N. ., Md Illias, R. ., Kheng Oon, L. ., Jaafar, N. R., Mohamad Sukri, N. ., & Abdul Rahman, R. . (2022). METABOLIC PATHWAY MODIFICATION FOR PRODUCTION OF XYLITOL FROM GLUCOSE IN ESCHERICHIA COLI . Jurnal Teknologi, 84(3), 151-162. https://doi.org/10.11113/jurnalteknologi.v84.18228

Issue

Section

Science and Engineering