• Chong Zheng Lee Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia
  • Ho Kah Chun Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0001-5591-3120
  • Mieow Kee Chan Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0002-0805-9395
  • Yeit Haan Teow Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia




Carbon nanomaterials concentration, graphene oxide, multiwalled carbon nanotubes, nanocomposite membrane, membrane antifouling


It is reported that the membrane properties can be enhanced by nanomaterials. However, agglomeration will occur due to the overdose of nanomaterials subsequently deteriorating membrane performance. The project aims to investigate the effect of concentration of cabon nanomaterials: multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO), on nanocomposite membrane for methyl blue (MB) dye removal. The GO/MWCNTs nanocomposite membranes were synthesized using direct blending method with three concentrations (0.2, 0.5, and 1 wt.%). The synthesized membrane was characterized by surface hydrophilicity, pore size and porosity, surface charge, functional group, and surface morphology. Besides, the performance of the synthesized membrane was evaluated by water permeability test, dye rejection test, and antifouling test. The result shows that the surface hydrophilicity was enhanced when the concentration of nanomaterials increased up to 0.2 wt%. However, higher concentration of nanomaterials reduces the membrane hydrophilicity due to the agglomeration of nanomaterials. The membrane with nanomaterials concentration of 0.2 wt.% (M0.2) has the best performance as it showed 6.85% and 32% improvement in water permeability and dye rejection when compared to the pristine membrane. Besides, M0.2 membrane has relatively good antifouling properties indicated by normalized flux (0.8043). This is due to the enhancement of hydrophilicity and zeta potential of M0.2 membrane by carbon nanomaterials. In short, optimum concentration of carbon nanomaterials are essential to enhance the membrane performance as agglomeration of nanomaterials occurs at high concentration.


Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., Polonio, J. C. 2019. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotechnol Res Innov. 3(2): 275-290.

Rajab, A. R., Al-Ani, Y., Ismael, Z. M. 2022. Feasibility of Horizontal Subsurface Flow As an Alternative Technique for Wastewater Treatment in Developing Countries. J Teknol. 84(5): 27-34.

Saratale, R. G., Saratale, G. D., Chang, J. S., Govindwar, S. P. 2011. Bacterial Decolorization and Degradation of Azo Dyes: A Review. J Taiwan Inst Chem Eng. 42(1): 138-157.

Ezugbe, E. O., Rathilal, S. 2020. Membrane Technologies in Wastewater Treatment: A Review. Membranes. Doi: 10.3390/membranes10050089.

Ho, K. C., Teow, Y. H., Mohammad, A. W. 2019. Optimization of Nanocomposite Conductive Membrane Formulation and Operating Parameters for Electrically-enhanced Palm Oil Mill Effluent Filtration using Response Surface Methodology. Process Saf Environ Prot. 126: 297-308.

Ho, K. C., Teow, Y. H., Ang, W. L., Mohammad, A. W. 2017. Novel GO/OMWCNTs Mixed-matrix Membrane with Enhanced Antifouling Property for Palm Oil Mill Effluent Treatment. Sep Purif Technol. 177: 337-349.

Ho, K. C., Teoh, Y. X., Teow, Y. H., Mohammad, A. W. 2021. Life Cycle Assessment (LCA) of Electrically-enhanced POME Filtration: Environmental Impacts of Conductive-membrane Formulation and Process Operating Parameters. J Environ Manage. Doi: 10.1016/j.jenvman.2020.111434.

Ho, K. C., Teow, Y. H., Mohammad, A. W., Ang, W. L., Lee, P. H. 2018. Development of Graphene Oxide (GO)/multi-walled Carbon Nanotubes (MWCNTs) Nanocomposite Conductive Membranes for Electrically Enhanced Fouling Mitigation. J Memb Sci. 552: 189-201.

Abidin, M. N. Z., Goh, P. S., Ismail, A. F., Othman, M. H. D., Hasbullah, H., Said, N., Kadir, S. H. S. A., Kamal, F., Abdullah, M. S., Ng, B. C. 2017. The Effect of PCA-g-MWCNTs Loading on the Performance of PES/MWCNTs Hemodialysis Membrane. Chem Eng Trans. 56: 1609-1614.

Khoerunnisa, F., Hendrawan, Primastari, D. R., Agiawati, R. 2018. Effect of MWCNT Filler on Properties and Flux of Chitosan/ PEG based Nanocomposites Membranes. MATEC Web Conf. 156: 04001.

Zhang, J., Xu, Z., Shan, M., Zhou, B., Li, Y., Li, B., Niu, J., Qian, X. 2013. Synergetic Effects of Oxidized Carbon Nanotubes and Graphene Oxide on Fouling Control and Anti-fouling Mechanism of Polyvinylidene Fluoride Ultrafiltration Membranes. J Memb Sci. 448: 81-92.

Antony, A., Leslie, G. 2011. Degradation of Polymeric Membranes in Water and Wastewater Treatment. Adv Membr Sci Technol Sustain Energy Environ Appl. 718-745.

Shrestha, A. 2010. Characterization of Porous Membranes via Porometry. Thesis. Institute of Engineering, Nepal.

Ndlwana, L., Sikhwivhilu, K., Moutloali, R., Ngila, J. C. 2020. Heterogeneous Functionalization of Polyethersulfone: A New Approach for pH-Responsive Microfiltration Membranes with Enhanced Antifouling Properties. J Membr Sci Res. 6(2):178-187.

Alqaheem, Y., Alomair, A. A. 2020. Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes. 10(2): 33.

Roslan, J., Mustapa Kamal, S. M., Khairul, K. F., Abdullah, N. 2018. Evaluation on Performance of Dead-end Ultrafiltration Membrane in Fractionating Tilapia by-product Protein Hydrolysate. Sep Purif Technol. 195: 21-29.

Maruf, S. H., Wang, L., Greenberg, A. R., Pellegrino, J., Ding, Y. 2013. Use of Nanoimprinted Surface Patterns to Mitigate Colloidal Deposition on Ultrafiltration Membranes. J Memb Sci. 428(February): 598-607.

Rahimi, Z., Zinatizadeh, A. A., Zinadini, S., van Loosdrecht, M. C. M. 2020. β-cyclodextrin Functionalized MWCNTs as a Promising Antifouling Agent in Fabrication of Composite Nanofiltration Membranes. Sep Purif Technol. Doi: 10.1016/j.seppur.2020.116979.

He, Y., Miao, J., Jiang, Z., Tu, K., Yang, H., Chen, S., Zhang, L., Zhang, R. 2019. Improving the Anti-fouling Property and Permeate Flux of Hollow Fiber Composite Nanofiltration Membrane using β-cyclodextrin. Sci Rep. 9(1): 1-10.

Zhao, C., Yang, B., Han, J., Meng, Y., Yu, L., Hou, D., Wang, J., Zhao, Y., Zhai, Y., Wang, S., Sun, X. 2018. Preparation of Carboxylic Multiwalled-carbon-nanotube–modified poly(m-phenylene isophthalamide) Hollow Fiber Nanofiltration Membranes with Improved Performance and Application for Dye Removal. Appl Surf Sci 453(April): 502-512.

Hebbar, R. S., Isloor, A. M., Inamuddin, Asiri A. M. 2017. Carbon Nanotube- and Graphene-based Advanced Membrane Materials for Desalination. Environ Chem Lett. 15(4): 643-671.

Shokouhian, M., Solouki, S. 2020. p-Phenylenediamine-Grafted Multi-walled Carbon Nanotubes as a Hydrophilic Modifier in Thin-film Nanocomposite Membrane. Polym Bull. 77(7): 3485-3498.

Zahirifar, J., Moosavian, S. M. A., Hadi, A., Khadiv-Parsi, P., Karimi-Sabet, J. 2018. Fabrication of a Novel Octadecylamine Functionalized Graphene Oxide/PVDF Dual-layer Flat Sheet Membrane for Desalination via Air Gap Membrane Distillation. Desalination. 428: 227-239.

Sunil, K., Sherugar, P., Rao, S., Lavanya, C., Balakrishna, G. R., Arthanareeswaran, G., Padaki, M. 2021. Prolific Approach for the Removal of Dyes by an Effective Interaction with Polymer Matrix using Ultrafiltration Membrane. J Environ Chem Eng. Doi: 10.1016/j.jece.2021.106328.

Vu, M. T., Monsalve-Bravo, G. M., Lin, R., Li, M., Bhatia, S. K., Smart, S. 2021. Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membranes. Doi: 10.3390/membranes11050328.

Subramaniam, M. N., Goh, P. S., Lau, W. J., Ng, B. C., Ismail, A. F. 2018. Development of Nanomaterial-based Photocatalytic Membrane for Organic Pollutants Removal. Adv Nanomater Membr Synth Its Appl. 45-67.

Tserengombo, B., Jeong, H., Dolgor, E., Delgado, A., Kim, S. 2021. Effects of Functionalization in Different Conditions and Ball Milling on the Dispersion and Thermal and Electrical Conductivity of Mwcnts in Aqueous Solution. Nanomaterials. Doi: 10.3390/nano11051323.

Peydayesh, M., Mohammadi, T., Bakhtiari, O. 2018. Effective Treatment of Dye Wastewater via Positively Charged TETA-MWCNT/PES Hybrid Nanofiltration Membranes. Sep Purif Technol. 194: 488-502.

Rodrigues, B. V. M., Leite, N. C. S., Cavalcanti, B. das N., da Silva, N. S., Marciano, F. R., Corat, E. J., Webster, T. J., Lobo, A. O. 2016. Graphene Oxide/multi-walled Carbon Nanotubes as Nanofeatured Scaffolds for the Assisted Deposition of Nanohydroxyapatite: Characterization and Biological Evaluation. Int J Nanomedicine. 11: 2569-2585.

Junaidi, N. F. D., Othman, N. H., Shahruddin, M. Z., Alias, N. H., Lau, W. J., Ismail, A. F. 2019. Effect of Graphene Oxide (GO) and Polyvinylpyrollidone (PVP) Additives on the Hydrophilicity of Composite Polyethersulfone (PES) Membrane. Malaysian J Fundam Appl Sci. 15(3): 361-366.

Nanda, H., Suneetha, V. 2017. Effect of Ampicillin and Chloramphenicol on Chick Serum. Asian J Pharm Clin Res. 10(8): 370-376.

Majeed, S., Fierro, D., Buhr, K., Wind, J., Du, B., Boschetti-de-Fierro, A., Abetz, V. 2012. Multi-walled Carbon Nanotubes (MWCNTs) Mixed Polyacrylonitrile (PAN) Ultrafiltration Membranes. J Memb Sci. 403-404: 101-109.

Lazim, Z. M., Mazuin, E., Hadibarata, T., Yusop, Z. 2015. The Removal of Methylene Blue and Remazol Brilliant Blue r Dyes by using Orange Peel and Spent Tea Leaves. J Teknol. 74(11): 129-135.

Teow, Y. H., Chiah, Y. H., Ho, K. C., Mahmoudi, E. 2022. Treatment of Semiconductor-industry Wastewater with the Application of Ceramic Membrane and polymeric Membrane. J Clean Prod. Doi: 10.1016/j.jclepro.2022.130569.






Science and Engineering

How to Cite

EFFECT OF CARBON NANOMATERIALS CONCENTRATION IN NANOCOMPOSITE MEMBRANE FOR METHYL BLUE DYE REMOVAL. (2022). Jurnal Teknologi, 84(6), 19-27. https://doi.org/10.11113/jurnalteknologi.v84.18277