• M. Najmi S. A. Department of Physics and Chemistry, Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Campus, 84600 Pagoh Muar, Johor, Malaysia
  • A. Hassan Department of Physics and Chemistry, Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Campus, 84600 Pagoh Muar, Johor, Malaysia https://orcid.org/0000-0002-1250-2337




Pool boiling, nucleate boiling, heat transfer, nanofluid, critical heat flux, heat transfer coefficient


Boiling heat transfer has maintained a high degree of interest due to the range of its applications in the energy sector. In recent years, much research has focused on improving the nucleate pool boiling by modifying the fluid properties. In this review article, the basic properties and characteristics of Al2O3 nanofluids and few other nanofluids are explored and discussed through past research findings. Next, previous studies that involved pool boiling heat transfer enhancement using Al2O3 nanofluid and its performance in terms of critical heat flux (CHF) and heat transfer coefficient (HTC) are further highlighted. These studies have employed methods that affected the performance of CHF and HTC such as electric field and surface modification. Maximum enhancement in CHF measured is approximately 200%. On the other hand, usage of prediction models to predict enhancements are also discussed thoroughly. Regardless of boiling performance enhancements with the deployment of nanofluids, several concerns must first be addressed before it is able to be deployed for practical use.


G. Liang, X. Mu, Y. Guo, S. Shen, S. Quan, and J. Zhang. 2016. Contact Vaporization of an Impacting Drop on Heated Surfaces. Exp. Therm. Fluid Sci. 74: 73-80. Doi: 10.1016/j.expthermflusci.2015.11.027.

G. Liang, S. Shen, Y. Guo, and J. Zhang. 2016. Boiling from Liquid Drops Impact on a Heated Wall. Int. J. Heat Mass Transf. 100: 48-57. Doi: 10.1016/j.ijheatmasstransfer.2016.04.061.

M. M. Sarafraz, V. Nikkhah, M. Nakhjavani, and A. Arya. 2018. Thermal Performance of a Heat Sink Microchannel Working with Biologically Produced Silver-water Nanofluid: Experimental Assessment. Exp. Therm. Fluid Sci. 91(April): 509-519. Doi: 10.1016/j.expthermflusci.2017.11.007.

M. Nakhjavani, V. Nikkhah, M. M. Sarafraz, S. Shoja, and M. Sarafraz. 2017. Green Synthesis of Silver Nanoparticles using Green Tea Leaves: Experimental Study on the Morphological, Rheological and Antibacterial Behaviour. Heat Mass Transf. und Stoffuebertragung. 53(10): 3201-3209, doi: 10.1007/s00231-017-2065-9.

M. M. Sarafraz, V. Nikkhah, M. Nakhjavani, and A. Arya. 2017. Fouling Formation and Thermal Performance of Aqueous Carbon Nanotube Nanofluid in a Heat Sink with Rectangular Parallel Microchannel. Appl. Therm. Eng. 123: 29-39. Doi: 10.1016/j.applthermaleng.2017.05.056.

A. Arya, M. M. Sarafraz, S. Shahmiri, S. A. H. Madani, V. Nikkhah, and S. M. Nakhjavani. 2018. Thermal Performance Analysis of a Flat Heat Pipe Working with Carbon Nanotube-water Nanofluid for Cooling of a High Heat Flux Heater. Heat Mass Transf. und Stoffuebertragung. 54(4): 985-997. Doi: 10.1007/s00231-017-2201-6.

M. M. Sarafraz, A. Arya, F. Hormozi, and V. Nikkhah. 2017. On the Convective Thermal Performance of a CPU Cooler Working with Liquid Gallium and CuO/water Nanofluid: A Comparative Study. Appl. Therm. Eng. 112: 1373-1381. Doi: 10.1016/j.applthermaleng.2016.10.196.

C. O. Gersey and I. Mudawar. 1995. Effects of Heater Length and Orientation on the Trigger Mechanism for Near-saturated Flow Boiling Critical Heat Flux-I. Photographic Study and Statistical Characterization of the Near-wall Interfacial Features. Int. J. Heat Mass Transf. 38(4): 629-641. Doi: 10.1016/0017-9310(94)00193-Y.

M. E. Johns and I. Mudawar. 1996. An Ultra-high Power Two-phase Jet-impingement Avionic Clamshell Module. J. Electron. Packag. Trans. ASME. 118(4): 264-270. Doi: 10.1115/1.2792162.

I. Mudawar and T. M. Anderson. 1990. Parametric Investigation into the Effects of Pressure, Subcooling, Surface Augmentation and Choice of Coolant on Pool Boiling in the Design of Cooling Systems for High-Power-Density Electronic Chips. J. Electron. Packag. Trans. ASME. 112(4): 375-382. Doi: 10.1115/1.2904392.

M. K. Sung and I. Mudawar. 2008. Single-phase Hybrid Micro-channel/Micro-Jet Impingement Cooling. Int. J. Heat Mass Transf. 51(17-18): 4342–4352. Doi: 10.1016/j.ijheatmasstransfer.2008.02.023.

G. Liang and I. Mudawar. 2018. Pool Boiling Critical Heat Flux (CHF) – Part 1: Review of Mechanisms, Models, And Correlations. Int. J. Heat Mass Transf. 117: 1352-1367. Doi: 10.1016/j.ijheatmasstransfer.2017.09.134.

G. Liang and I. Mudawar. 2018. Review of Pool Boiling Enhancement with Additives and Nanofluids. Int. J. Heat Mass Transf. 124: 423-453. Doi: 10.1016/j.ijheatmasstransfer.2018.03.046.

J. Chen, S. Ahmad, J. Cai, H. Liu, K. T. Lau, and J. Zhao. 2021. Latest Progress on Nanotechnology Aided Boiling Heat Transfer Enhancement: A Review. Energy. 215: 119114. Doi: 10.1016/j.energy.2020.119114.

S. M. You, J. H. Kim, and K. H. Kim. 2003. Effect of Nanoparticles on Critical Heat Flux Of Water in Pool Boiling Heat Transfer. Appl. Phys. Lett. 83(16): 3374-3376. Doi: 10.1063/1.1619206.

A. Of and M. Transfer. 1979. Bibliography on Augmentation of Convective Heat and Mass Transfer. 1(May).

W. Ding, E. Krepper, and U. Hampel. 2017. Quantitative Prediction of Critical Heat Flux Initiation in Pool and Flow Boiling. Int. J. Therm. Sci. 125(May): 121-131. Doi: 10.1016/j.ijthermalsci.2017.11.022.

A. Karimi and M. Afrand. 2018. Numerical Study on Thermal Performance of an Air-cooled Heat Exchanger: Effects of Hybrid Nanofluid, Pipe Arrangement and Cross Section. Energy Convers. Manag. 164(January): 615-628. Doi: 10.1016/j.enconman.2018.03.038.

T. Halon, B. Zajaczkowski, S. Michaie, R. Rulliere, and J. Bonjour. 2017. Experimental Study of Low Pressure Pool Boiling of Water from Narrow Tunnel Surfaces. Int. J. Therm. Sci. 121: 348–357. Doi: 10.1016/j.ijthermalsci.2017.07.028.

M. M. Sarafraz and F. Hormozi. 2015. Pool Boiling Heat Transfer to Dilute Copper Oxide Aqueous Nanofluids. Int. J. Therm. Sci. 90: 224-237. Doi: 10.1016/j.ijthermalsci.2014.12.014.

M. Afrand. 2017. Experimental Study on Thermal Conductivity of Ethylene Glycol Containing Hybrid Nano-Additives and Development of a New Correlation. Appl. Therm. Eng. 110: 1111-1119. Doi: 10.1016/j.applthermaleng.2016.09.024.

B. A. F. Dehkordi and A. Abdollahi. 2018. Experimental Investigation Toward Obtaining the Effect of Interfacial Solid-liquid Interaction and Basefluid Type on the Thermal Conductivity of Cuo-loaded Nanofluids. Int. Commun. Heat Mass Transf. 97: 151-162. Doi: 10.1016/j.icheatmasstransfer.2018.08.001.

Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, and J. Wang, 2012. PVAm–PIP/PS Composite Membrane with High Performance For CO2/N2 Separation. AIChE Journal. 59(4).

M. Saleemi, S. Vanapalli, N. Nikkam, M. S. Toprak, and M. Muhammed. 2015. Classical Behavior of Alumina (Al2O3) Nanofluids in Antifrogen N with Experimental Evidence. J. Nanomater. 1-7. Doi: 10.1155/2015/256479.

W. Yu and H. Xie. 2012. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J. Nanomater. Doi: 10.1155/2012/435873.

M. M. Sarafraz, T. Kiani, and F. Hormozi. 2016. Critical Heat Flux and Pool Boiling Heat Transfer Analysis of Synthesized Zirconia Aqueous Nano-Fluids. Int. Commun. Heat Mass Transf. 70: 75-83. Doi: 10.1016/j.icheatmasstransfer.2015.12.008.

C. Gerardi, J. Buongiorno, L. wen Hu, and T. Mckrell. 2011. Infrared Thermometry Study of Nanofluid Pool Boiling Phenomena. Nanoscale Res. Lett. 6(1): 1-17. Doi: 10.1186/1556-276X-6-232.

A. Akbari, S. A. Alavi Fazel, S. Maghsoodi, and A. S. Kootenaei. 2019. Pool Boiling Heat Transfer Characteristics of Graphene-based Aqueous Nanofluids. J. Therm. Anal. Calorim. 135(1): 697-711. Doi: 10.1007/s10973-018-7182-2.

M. S. Kamel and F. Lezsovits. 2020. Enhancement of Pool Boiling Heat Transfer Performance using Dilute Cerium Oxide/Water Nanofluid: An Experimental Investigation. Int. Commun. Heat Mass Transf. 114(April): 104587. Doi: 10.1016/j.icheatmasstransfer.2020.104587.

S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. FED, vol. 231, no. January 1995, pp. 99–105, 1995.

B. Vaferi, F. Samimi, E. Pakgohar, and D. Mowla. 2014. Artificial Neural Network Approach for Prediction of Thermal Behavior of Nanofluids Flowing through Circular Tubes. Powder Technol. 267: 1-10. Doi: 10.1016/j.powtec.2014.06.062.

M. A. Ariana, B. Vaferi, and G. Karimi. 2015. Prediction of Thermal Conductivity of Alumina Water-based Nanofluids by Artificial Neural Networks. Powder Technol. 278: 1-10. Doi: 10.1016/j.powtec.2015.03.005.

D. Wen and Y. Ding. 2005. Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous based γ-alumina Nanofluids. J. Nanoparticle Res. 7(2-3): 265-274. Doi: 10.1007/s11051-005-3478-9.

K. J. Park and D. Jung. 2007. Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes. Int. J. Heat Mass Transf. 50(21-22): 4499-4502. Doi: 10.1016/j.ijheatmasstransfer.2007.03.012.

Z. hua Liu, J. guo Xiong, and R. Bao. 2007. Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator with Micro-grooved Heating Surface. Int. J. Multiph. Flow. 33(12): 1284-1295. Doi: 10.1016/j.ijmultiphaseflow.2007.06.009.

I. C. Bang and S. Heung Chang. 2005. Boiling Heat Transfer Performance and Phenomena of Al2O 3-water Nano-fluids from a Plain Surface in a Pool. Int. J. Heat Mass Transf. 48(12): 2407–2419. Doi: 10.1016/j.ijheatmasstransfer.2004.12.047.

H. D. Kim and M. H. Kim. 2007. Effect of Nanoparticle Deposition on Capillary Wicking that Influences the Critical Heat Flux In Nanofluids. Appl. Phys. Lett. 91(1): 2005-2008. Doi: 10.1063/1.2754644.

S. K. Das, N. Putra, and W. Roetzel. 2003. Pool Boiling Characteristics of Nano-fluids. Int. J. Heat Mass Transf. 46(5): 851-862. Doi: 10.1016/S0017-9310(02)00348-4.

V. Trisaksri and S. Wongwises. 2009. Nucleate Pool Boiling Heat Transfer of TiO2-R141b Nanofluids. Int. J. Heat Mass Transf. 52(5-6): 1582-1588. Doi: 10.1016/j.ijheatmasstransfer.2008.07.041.

G. P. Narayan, K. B. Anoop, and S. K. Das. 2007. Mechanism of Enhancement/deterioration of Boiling Heat Transfer using Stable Nanoparticle Suspensions Over Vertical Tubes. J. Appl. Phys. 102(7). Doi: 10.1063/1.2794731.

M. R. Raveshi, A. Keshavarz, M. S. Mojarrad, and S. Amiri. 2013. Experimental Investigation of Pool Boiling Heat Transfer Enhancement of Alumina-water-ethylene Glycol Nanofluids. Exp. Therm. Fluid Sci. 44: 805-814. Doi: 10.1016/j.expthermflusci.2012.09.025.

G. Liang, H. Yang, J. Wang, and S. Shen. 2021. Assessment of Nanofluids Pool Boiling Critical Heat Flux. Int. J. Heat Mass Transf. 164. Doi: 10.1016/j.ijheatmasstransfer.2020.120403.

Y. Watanabe, K. Enoki, and T. Okawa. 2018. Nanoparticle Layer Detachment and Its Influence on the Heat Transfer Characteristics in Saturated Pool Boiling of Nanofluids. Int. J. Heat Mass Transf. 125: 171-178. Doi: 10.1016/j.ijheatmasstransfer.2018.04.072.

S. Bhambi and V. K. Agarwal. 2019. Sub Atmospheric Pool Boiling and Experimental Heat Transferof Alumina Nanofluids. Mater. Today Proc. 18: 1495-1509. Doi: 10.1016/j.matpr.2019.06.619.

D. Wen and Y. Ding. 2004. Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions. Int. J. Heat Mass Transf. 47(24): 5181-5188. Doi: 10.1016/j.ijheatmasstransfer.2004.07.012.

S. Mukherjee, S. Jana, P. Chandra Mishra, P. Chaudhuri, and S. Chakrabarty. 2021. Experimental Investigation on Thermo-physical Properties and Subcooled Flow Boiling Performance of Al2O3/water Nanofluids in a Horizontal Tube. Int. J. Therm. Sci. 159(April 2020): 106581. Doi: 10.1016/j.ijthermalsci.2020.106581.

M. M. Sarafraz and F. Hormozi. 2014. Forced Convective and Nucleate Flow Boiling Heat Transfer to Alumina Nanofluids. Period. Polytech. Chem. Eng. 58(1): 37-46. Doi: 10.3311/PPch.2206.

K. B. Rana, A. K. Rajvanshi, and G. D. Agrawal. 2013. A Visualization Study of Flow Boiling Heat Transfer with Nanofluids. J. Vis. 16(2): 133-143. Doi: 10.1007/s12650-013-0161-6.

O. S. Prajapati and N. Rohatgi. 2014. Flow Boiling Heat Transfer Enhancement by using ZnO-water Nanofluids. Sci. Technol. Nucl. Install. Doi: 10.1155/2014/890316.

A. R. Yagnem and S. Venkatachalapathy. 2019. Heat Transfer Enhancement Studies in Pool Boiling using Hybrid Nanofluids. Thermochim. Acta. 672(December 2018): 93-100. Doi: 10.1016/j.tca.2018.11.014.

M. S. Kamel, F. Lezsovits, A. Abdollahi, and M. Izadi. 2021. Amelioration of Pool Boiling Thermal Performance in Case of using a New Hybrid Nanofluid. Case Stud. Therm. Eng. 24(December 2020): 100872. Doi: 10.1016/j.csite.2021.100872.

L. L. Manetti, M. T. Stephen, P. A. Beck, and E. M. Cardoso. 2017. Evaluation of the Heat Transfer Enhancement during Pool Boiling using Low Concentrations of Al2O3-water based Nanofluid. Exp. Therm. Fluid Sci. 87: 191-200. Doi: 10.1016/j.expthermflusci.2017.04.018.

M. Modi, P. Kangude, and A. Srivastava. 2020. Performance evaluation of alumina nanofluids and nanoparticles-deposited surface on nucleate pool boiling phenomena. Int. J. Heat Mass Transf. 146: 118833. Doi: 10.1016/j.ijheatmasstransfer.2019.118833.

Y. Chen, J. Guo, X. Liu, and D. He. 2022. Experiment and Predicted Model Study of Resuspended Nanofluid Pool Boiling Heat Transfer under Electric Field. Int. Commun. Heat Mass Transf. 131: 105847. Doi: 10.1016/j.icheatmasstransfer.2021.105847.

S. M. Kwark, M. Amaya, R. Kumar, G. Moreno, and S. M. You. 2010. Effects of Pressure , Orientation, and Heater Size on Pool Boiling of Water with Nanocoated Heaters. Int. J. Heat Mass Transf. 53(23-24): 5199-5208. Doi: 10.1016/j.ijheatmasstransfer.2010.07.040.

S. M. Kwark, G. Moreno, R. Kumar, H. Moon, and S. M. You. 2010. Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water. Int. J. Heat Mass Transf. 53(21-22): 4579-4587. Doi: 10.1016/j.ijheatmasstransfer.2010.06.035.

A. Pare and S. K. Ghosh. 2021. Surface Qualitative Analysis and ANN Modelling for Pool Boiling Heat Transfer using Al2O3-water based Nanofluids. Colloids Surfaces A Physicochem. Eng. Asp. 610: 125926. Doi: 10.1016/j.colsurfa.2020.125926.

H. Shakir Majdi, H. M. Abdul Hussein, L. Jaafer Habeeb, and D. Zivkovic. 2022. Pool Boiling Simulation of Two Nanofluids at Multi Concentrations in Enclosure with Different Shapes of Fins. Mater. Today Proc. 60: 2043-2063. Doi: 10.1016/j.matpr.2022.01.290.

D. Bhatt, P. Kangude, and A. Srivastava. 2019. Simultaneous Mapping of Single Bubble Dynamics and Heat Transfer Rates for SiO2/water Nanofluids under Nucleate Pool Boiling Regime. Phys. Fluids. 31(1). Doi: 10.1063/1.5050980.

J. P. McHale and S. V. Garimella. 2010. Bubble Nucleation Characteristics in Pool Boiling of a Wetting Liquid on Smooth and Rough Surfaces. Int. J. Multiph. Flow. 36(4): 249-260. Doi: 10.1016/j.ijmultiphaseflow.2009.12.004.

D. Wang, X. Quan, C. Liu, and P. Cheng. 2018. An Experimental Investigation on Periodic Single Bubble Growth and Departure from a Small Heater Submerged in a Nanofluid Containing Moderately Hydrophilic Nanoparticles. Int. Commun. Heat Mass Transf. 95: 1-8. Doi: 10.1016/j.icheatmasstransfer.2018.03.016.

D. S. Jain, S. Srinivas Rao, and A. Srivastava. 2016. Rainbow Schlieren Deflectometry Technique for Nanofluid-based Heat Transfer Measurements under Natural Convection Regime. Int. J. Heat Mass Transf. 98: 697-711. Doi: 10.1016/j.ijheatmasstransfer.2016.03.062.

S. Srinivas Rao and A. Srivastava. 2014. Interferometry-based Whole Field Investigation of heat Transfer Characteristics of Dilute Nanofluids. Int. J. Heat Mass Transf. 79: 166-175. Doi: 10.1016/j.ijheatmasstransfer.2014.07.097.

Y. H. Diao, L. Guo, Y. Liu, Y. H. Zhao, and S. Wang. 2014. Electric Field Effect on the Bubble Behavior and Enhanced Heat-transfer Characteristic of a Surface with Rectangular Microgrooves. Int. J. Heat Mass Transf. 78: 371-379. Doi: 10.1016/j.ijheatmasstransfer.2014.07.004.

X. Quan, M. Gao, P. Cheng, and J. Li. 2015. An Experimental Investigation of Pool Boiling Heat Transfer on Smooth/Rib Surfaces under an Electric Field. Int. J. Heat Mass Transf. 85: 595-608. Doi: 10.1016/j.ijheatmasstransfer.2015.01.083.

Y. Hristov, D. Zhao, D. B. R. Kenning, K. Sefiane, and T. G. Karayiannis. 2009. A Study of Nucleate Boiling and Critical Heat Flux with EHD Enhancement. Heat Mass Transf. und Stoffuebertragung. 45(7): 999-1017. Doi: 10.1007/s00231-007-0286-z.

S. Ahangar Zonouzi, H. Aminfar, and M. Mohammadpourfard. 2019. A Review on Effects of Magnetic Fields and Electric Fields on Boiling Heat Transfer and CHF. Appl. Therm. Eng. 151: 11-25. Doi: 10.1016/j.applthermaleng.2019.01.099.

H. Ganapathy and V. Sajith. 2013. Semi-analytical Model for Pool Boiling of Nanofluids. Int. J. Heat Mass Transf. 57(1): 32-47. Doi: 10.1016/j.ijheatmasstransfer.2012.09.056.

M. Hassanpour, B. Vaferi, and M. E. Masoumi. 2018. Estimation of Pool Boiling Heat Transfer Coefficient of Alumina Water-based Nanofluids by Various Artificial Intelligence (AI) Approaches. Appl. Therm. Eng. 128: 1208-1222. Doi: 10.1016/j.applthermaleng.2017.09.066.

X. Wang, Y. Wang, H. Chen, and Y. Zhu. 2018. A Combined CFD/visualization Investigation of Heat Transfer Behaviors during Geyser Boiling in Two-phase Closed Thermosyphon. Int. J. Heat Mass Transf. 121: 703-714. Doi: 10.1016/j.ijheatmasstransfer.2018.01.005.

E. Krepper and R. Rzehak. 2011. CFD for Subcooled Flow Boiling: Simulation of DEBORA Experiments. Nucl. Eng. Des. 241(9): 3851-3866. Doi: 10.1016/j.nucengdes.2011.07.003.

E. Krepper, R. Rzehak, C. Lifante, and T. Frank. 2013. CFD for Subcooled Flow Boiling: Coupling Wall Boiling and Population Balance Models. Nucl. Eng. Des. 255: 330-346.doi: 10.1016/j.nucengdes.2012.11.010.

M. S. Kamel, M. S. Al-agha, F. Lezsovits, and O. Mahian. 2020. Simulation of Pool Boiling of Nanofluids by using Eulerian Multiphase Model. J. Therm. Anal. Calorim. 142(1): 493-505. Doi: 10.1007/s10973-019-09180-x.






Science and Engineering

How to Cite

A REVIEW OF POOL BOILING HEAT TRANSFER PROPERTIES BY NANOFLUID. (2023). Jurnal Teknologi, 85(3), 1-13. https://doi.org/10.11113/jurnalteknologi.v85.18324