SIMULASI PENYEBARAN GAS BIOHIDROGEN DI DALAM LOJI BIOGAS MENGGUNAKAN PERKOMPUTERAN DINAMIK BENDALIR DAN PENILAIAN KESAN KEBAKARAN DAN LETUPAN

SIMULATION OF BIOHYDROGEN GAS DISPERSION IN A BIOGAS PLANT USING COMPUTATIONAL FLUID DYNAMIC (CFD) AND IMPACT ASSESSMENT OF FIRE AND EXPLOSION

Authors

  • Masli Irwan Rosli ᵃInstitut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia ᵇJabatan Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0002-8845-0334
  • Ikhmal Zariq Al Imran Jamal Ikhsan Jabatan Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0002-3074-0558
  • Dyg Siti Nurzailyn Abg Shamsuddin Jabatan Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0002-8766-9684

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18329

Keywords:

BioH2 dispersion, fire and explosion, computational fluid dynamics, CFD, TNT-equivalent explosion model, Dow’s fire and explosion index, F&EI

Abstract

Accidental release of biohydrogen (bioH2) gas in biogas plant has a high risk to cause fire and explosion incidents. Thus, computational fluid dynamics (CFD) was used to study the dispersion of 158 kg of bioH2 gas through pipe leaks at a pure bioH2 spherical storage tank. The TNT-equivalent explosion model found that the threat zone which can destroy buildings due to overpressure exceeding 55 kPa was located at a radius of 9.31 m from the centre of the explosion at the fermenter. Further evaluation using the Dow’s fire and explosion index (F&EI) expects a maximum probable day outage (MPDO) and business interruption (BI) of 43 days and USD165,210, respectively. Therefore, safety control in terms of elimination of ignition sources, material replacement, engineering controls, safety components, layout design, administrative controls and personal protective equipment have been successfully proposed. In conclusion, this study has successfully simulated the dispersion of bioH2 gas and evaluated the impact of fire and explosion on biogas plant.

References

B. Gopalakrishnan, N. Khanna, and D. Das. 2019. Dark-Fermentative Biohydrogen Production. Biohydrogen. 79-122.

S. V. Mohan and A. Pandey. 2013. Biohydrogen Production: An Introduction. Biohydrogen.

E. O. Koroglu, O. K. Ozdemir, B. Ozkaya, and A. Demir. 2019. An Integrated System Development Including PEM Fuel Cell/Biogas Purification during Acidogenic Biohydrogen Production from Dairy Wastewater. Int. J. Hydrogen Energy. 44(32): 17297-17303.

M. K. I. Sarwani, M. Fawzi, S. A. Osman, and A. B. Nasrin. 2019. Bio-methane from Palm Oil Mill Effluent (POME): Transportation Fuel Potential in Malaysia. J. Adv. Res. Fluid Mech. Therm. Sci. 63(1): 1-11.

M. A. F. Hamzah, P. M. Abdul, A. M. Azahar, and J. M. Jahim. 2020. Performance of Anaerobic Digestion of Acidified Palm Oil Mill Effluent under Various Loading Rates and Temperatures. Water. 12: 2432.

C. I. Lim and W. K. Biswas. 2019. Sustainability Implications of the Incorporation of a Biogas Trapping System into a Conventional Crude Palm Oil Supply Chain. Sustain. 11(3).

A. Yap, K. Chung, and U. K. H. M. N. 2021. Computer Aided Simulation POME Biogas Purification System. 33(2): 293-316.

S. S. Mahmod, J. M. Jahim, P. M. Abdul, A. A. I. Luthfi, and M. S. Takriff. 2021. Techno-economic Analysis of Two-stage Anaerobic System for Biohydrogen and biomethane Production from Palm Oil Mill Effluent. J. Environ. Chem. Eng. 9(4): 105679.

S. N. A. Rahman et al. 2016. Overview Biohydrogen Technologies And Application in Fuel Cell Technology. Renewable and Sustainable Energy Reviews.

G. Di Marcoberardino, D. Vitali, F. Spinelli, M. Binotti, and G. Manzolini. 2018. Green Hydrogen Production from Raw Biogas: A Techno-economic Investigation of Conventional Processes using Pressure Swing Adsorption Unit. Processes. 6(3).

C. Allevi and G. Collodi. 2017. Hydrogen Production in IGCC Systems. Elsevier Ltd.

J. G. Speight. 2019. Chapter 15 - Hydrogen Production. Heavy Oil Recovery and Upgrading. J. G. Speight, Ed. Gulf Professional Publishing. 657-697.

N. Zhang, P. Bénard, R. Chahine, T. Yang, and J. Xiao. 2021. Optimization of Pressure Swing Adsorption for Hydrogen Purification based on Box-Behnken Design Method. Int. J. Hydrogen Energy. 46(7): 5403-5417.

I. I., A. A., S. I. K., and O. M. R. 2019. Optimizing Purity and Recovery of Hydrogen from Syngas by Equalized Pressure Swing Adsorption using Palm Kernel Shell Activated Carbon Adsorbent. AIP Conference Proceedings 2124. 020059.

R. Piemjaiswang, K. Ratanathammapan, P. Kunchonthara, P. Piumsomboon, and B. Chalermsinsuwan. 2016. CFD Study of Cyclone Performance: Effect of Inlet Section Angle and Particle Size Distribution. J. Teknol. 78(6-4): 83-89.

K. Wang, X. Zhang, Y. Miao, B. He, and C. Wang. 2020. Dispersion and Behavior of Hydrogen for the Safety Design of Hydrogen Production Plant Attached with Nuclear Power Plant. Int. J. Hydrogen Energy. 45(39): 20250-20255.

S. M. Tauseef, D. Rashtchian, and S. A. Abbasi. 2011. CFD-based Simulation of Dense Gas Dispersion in Presence of Obstacles. J. Loss Prev. Process Ind. 24(4): 371-376.

S. M. Tauseef, D. Rashtchian, T. Abbasi, and S. A. Abbasi. 2011. A Method for Simulation of Vapour Cloud Explosions based on Computational Fluid Dynamics (CFD). J. Loss Prev. Process Ind. 24(5): 638-647.

M. Assael and K. Kakosimos. 2010. Fires, Explosions, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis. CRC Press.

Z. S. Nezamodini, Z. Rezvani, and K. Kian. 2017. Dow’s Fire and Explosion Index: A Case-study in the Process Unit of an Oil Extraction Factory. Electron. Physician. 9(2): 3878-3882.

H. Xiao, Q. Duan, and J. Sun. 2018. Premixed Flame Propagation in Hydrogen Explosions. Renew. Sustain. Energy Rev. 81(June): 1988-2001.

Z. Abdul Rashid, A. Alias, K. Hamid, M. Bani, and M. El-Harbawi. 2015. Analysis the Effect of Explosion Efficiency in the TNT Equivalent Blast Explosion Model. Proceedings of the International Conference on Global Sustainability and Chemical Engineering. 381-390.

AIChe. 1994. Dow’s Chemical Exposure Index Guide. 1st ed. American Institute of Chemical Engineers.

M. L. Costa Neto and G. N. Doz. 2017. Study of Blast Wave Overpressures using the Computational Fluid Dynamics. Ibracon Struct. Mater. J. 10(3): 669-677.

AIChE. 1994. Dow’s Fire & Explosion Index Hazard Classification Guide. Wiley.

DOSH. 2008. Department of Occupational Safety and Health, Ministry of Human Resources, Malaysia on Guidelines for Hazard Identification. Risk Assessment and Risk Control (HIRARC).

S. S. Mahmod et al. 2019. Operation Performance of Up-flow Anaerobic Sludge Blanket (UASB) Bioreactor for Biohydrogen Production by Self-granulated Sludge using Pre-treated palm Oil Mill Effluent (POME) as Carbon Source. Renew. Energy. 134: 1262-1272.

S. Yacob, Y.-T. Hung, Y. Shirai, and M. Ali Hassan. 2006. Treatment of Palm Oil Wastewaters. Waste Treat. Food Process. Ind. 101-117.

M. A. Abd Nasir, J. M. Jahim, P. M. Abdul, H. Silvamany, R. M. Maaroff, and M. F. Mohammed Yunus. 2019. The Use of Acidified Palm Oil Mill Effluent for Thermophilic Biomethane Production by Changing the Hydraulic Retention Time in Anaerobic Sequencing Batch Reactor. Int. J. Hydrogen Energy. 3373-3381.

AIChe. 2003. Guidelines for Facility Sitting and Layout. Wiley.

Y. Tominaga and T. Stathopoulos. 2018. CFD Simulations of Near-field Pollutant Dispersion with Different Plume Buoyancies. Build. Environ. 131(January): 128-139.

K. Wijesooriya, D. Mohotti, K. Chauhan, and D. Dias-da-Costa. 2019. Numerical Investigation of Scale Resolved Turbulence Models (LES, ELES and DDES) in the Assessment of Wind Effects on Supertall Structures. J. Build. Eng. 25(February, p. 100842, 2019.

R. Vázquez-Román, C. Díaz-Ovalle, E. Quiroz-Pérez, and M. S. Mannan. 2016. A CFD-based Approach for Gas Detectors Allocation. J. Loss Prev. Process Ind. 44: 633-641.

R. K. Jain, Z. “Cindy” Cui, and J. K. Domen. 2016. Environmental Impact of Mining. Elsevier,

S. Mannan. 2012. Lees’ Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control. Fourth Edition. 1-2.

2008. Guidelines for Evaluating the Effects of Vapor Cloud Explosions using a TNT Equivalency Method. FM Global.

A. R. Soman and G. Sundararaj. 2012. Consequence Assessment of Vapour cloud Explosion Involving Hydrogen Release. Int. J. Emerg. Technol. Adv. Eng. 2(11): 291-297. [Online].

J. L. Orozco et al. 2019. Assessment of an Ammonia Incident in the Industrial Area of Matanzas. J. Clean. Prod. 222: 934-941.

X. Lok, Y. J. Chan, and D. C. Y. Foo. 2020. Simulation and Optimisation of Full-scale Palm Oil Mill Effluent (POME) Treatment Plant with Biogas Production. J. Water Process Eng. 38(March): 101558.

W. Han, Z. Liu, J. Fang, J. Huang, H. Zhao, and Y. Li. 2016. Techno-economic Analysis of Dark Fermentative Hydrogen Production from Molasses in a Continuous Mixed Immobilized Sludge Reactor. J. Clean. Prod. 127: 567-572.

S. Basu. 2017. Instrumentation Safety Implementation and Explosion Protection. Plant Hazard Analysis and Safety Instrumentation Systems. Academic Press. 699-806.

T. V. Dinh, I. Y. Choi, Y. S. Son, and J. C. Kim. 2016. A Review on Non-dispersive Infrared Gas Sensors: Improvement of Sensor Detection Limit and Interference Correction. Sensors Actuators, B Chem. 231: 529-538.

Downloads

Published

2022-10-20

Issue

Section

Science and Engineering

How to Cite

SIMULASI PENYEBARAN GAS BIOHIDROGEN DI DALAM LOJI BIOGAS MENGGUNAKAN PERKOMPUTERAN DINAMIK BENDALIR DAN PENILAIAN KESAN KEBAKARAN DAN LETUPAN: SIMULATION OF BIOHYDROGEN GAS DISPERSION IN A BIOGAS PLANT USING COMPUTATIONAL FLUID DYNAMIC (CFD) AND IMPACT ASSESSMENT OF FIRE AND EXPLOSION. (2022). Jurnal Teknologi, 84(6), 189-200. https://doi.org/10.11113/jurnalteknologi.v84.18329