FREQUENCY OF NON-LINEAR DYNAMIC RESPONSE OF A POROUS FUNCTIONALLY GRADED CYLINDRICAL PANELS

Authors

  • Ahmed Mouthanna University of Technology, Mechanical Engineering Department, Iraq https://orcid.org/0000-0002-3218-1104
  • Sadeq H. Bakhy University of Technology, Mechanical Engineering Department, Iraq
  • Muhannad Al-Waily Department of Mechanical Engineering, Faculty of Engineering, University of Kufa, Iraq

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18422

Keywords:

Non-linear vibration, Galerkin technique, porous functionally graded Materials, shell theory, cylindrical Panels

Abstract

In this article, a nonlinear dynamical investigation of porose functionally graded cylindrical panels using a proposed analytical model is carried out. The material's properties are considered to be porosity-dependent and graded in the thickness direction, corresponding to a power-law distribution. The classical shell theory, with the geometrical shape of nonlinear in von Karman–Donnell, is employed to get the Lagrange motion equations. By applying the Galerkin procedure, the system of nonlinear dynamic vibration equations is found. The natural frequencies and dynamic amplitude vibrations are obtained by using the fourth-order Runge–Kutta approach. In numerical analyses, the effects of porosity factor, power-law index, porous FGM thickness, frequency–amplitude relation, and excitation force on the dynamic response of thin functionally graded porous cylindrical panels are investigated. Through the obtained results, it is discovered that the porosity coefficients have important effects on the natural frequencies and amplitude of the nonlinear dynamic response of the FG structures. It leads to a reduction in natural frequencies by 5.74 % at 10% pores.

References

S. Hosseini-Hashemi, A. R. Abaei, and M. R. Ilkhani. 2015. Free Vibrations of Functionally Graded Viscoelastic Cylindrical Panel under Various Boundary Conditions. Composite Structures. 126: 1-15. Doi: 10.1016/j.compstruct.2015.02.031.

I. M. El-Galy, B. I. Saleh, and M. H. Ahmed. 2019. Functionally Graded Materials Classifications and Development Trends from Industrial Point of View. SN Applied Sciences. 1(11). Springer Nature. Doi: 10.1007/s42452-019-1413-4.

K. Gao, Q. Huang, S. Kitipornchai, and J. Yang. 2021. Nonlinear Dynamic Buckling of Functionally Graded Porous Beams. Mechanics of Advanced Materials and Structures. 28(4): 418-429. Doi: 10.1080/15376494.2019.1567888.

Soldatos, K. P., and V. P. Hadjigeorgiou. 1990. Three-dimensional Solution of the Free Vibration Problem of Homogeneous Isotropic Cylindrical Shells and Panels. Journal of Sound and Vibration. 137(3): 369-384.

J. A. Zukas and J. R. Vinson. 1971. Laminated Transversely Isotropic Cylindrical Shells. [Online]. Available: http://www.asme.org/about-asme/terms-of-use.

Bich, Dao Huy. 2006. Non-linear Analysis of Laminated Composite Doubly Curved Shallow Shells. Vietnam Journal of Mechanics. 28(1): 43-55.

S. M. R. Khalili, A. Davar, and K. Malekzadeh Fard. 2012. Free Vibration Analysis of Homogeneous Isotropic Circular Cylindrical Shells Based on a New Three-Dimensional Refined Higher-Order Theory. International Journal of Mechanical Sciences. 56(1): 1-25. Doi: 10.1016/j.ijmecsci.2011.11.002.

A. G. Shah, T. Mahmood, and M. N. Naeem. 2009. Vibrations of FGM Thin Cylindrical Shells with Exponential Volume Fraction Law. Applied Mathematics and Mechanics (English Edition). 30(5): 607-615. Doi: 10.1007/s10483-009-0507-x.

S. H. Arshad, M. N. Naeem, N. Sultana, A. G. Shah, and Z. Iqbal. 2011. Vibration Analysis of bi-layered FGM Cylindrical Shells. Archive of Applied Mechanics. 81(3): 319-343. Doi: 10.1007/s00419-010-0409-8.

A. H. Sofiyev. 2011. On the Vibration and Stability of Clamped FGM Conical Shells Under External Loads. Journal of Composite Materials. 45(7): 771-788. Doi: 10.1177/0021998310373515.

H. S. Shen. 2012. Nonlinear Vibration of Shear Deformable FGM Cylindrical Shells Surrounded by an Elastic Medium. Composite Structures. 94(3): 1144-1154. Doi: 10.1016/j.compstruct.2011.11.012.

Loy, C. T., K. Y. Lam, and J. N. Reddy. 1999. Vibration of Functionally Graded Cylindrical Shells. International Journal of Mechanical Sciences. 41(3): 309-324.

Bich, Dao Huy. 2006. Non-linear Analysis of Laminated Composite Doubly Curved Shallow Shells. Vietnam Journal of Mechanics. 28(1): 43-55.

S. M. Chorfi and A. Houmat. 2010. Non-linear Free Vibration of a Functionally Graded Doubly-curved Shallow Shell of Elliptical Plan-form. Composite Structures. 92(10): 2573-2581. Doi: 10.1016/j.compstruct.2010.02.001.

Mouthanna, Ahmed, Hamad M. Hasan, and Khalid B. Najim. 2018. Nonlinear Vibration Analysis of Functionally Graded Imperfection of Cylindrical Panels Reinforced with Different Types of Stiffeners. 2018 11th International Conference on Developments in eSystems Engineering (DeSE). IEEE.

S. R. Li, X. H. Fu, and R. C. Batra. 2010. Free Vibration of Three-layer Circular Cylindrical Shells with Functionally Graded Middle Layer. Mechanics Research Communications. 37(6): 577-580. Doi: 10.1016/j.mechrescom.2010.07.006.

D. H. Bich, D. van Dung, and V. H. Nam, Jul. 2012 Nonlinear Dynamical Analysis of Eccentrically Stiffened Functionally Graded Cylindrical Panels. Composite Structures. 94(8): 2465-2473. Doi: 10.1016/j.compstruct.2012.03.012.

N. D. Duc and T. Q. Quan. 2014. Nonlinear Response of Imperfect Eccentrically Stiffened FGM Cylindrical Panels on Elastic Foundation Subjected to Mechanical Loads. European Journal of Mechanics, A/Solids. 46: 60-71. Doi: 10.1016/j.euromechsol.2014.02.005.

D. Wu, A. Liu, Y. Huang, Y. Huang, Y. Pi, and W. Gao, Jun. 2018. Dynamic Analysis of Functionally Graded Porous Structures through Finite Element Analysis. Engineering Structures. 165: 287-301. Doi: 10.1016/j.engstruct.2018.03.023.

Ş. D. Akbaş, Feb. 2018. Forced Vibration Analysis of Functionally Graded Porous Deep Beams. Composite Structures. 186: 293-302. Doi: 10.1016/j.compstruct.2017.12.013.

H. Li, F. Pang, H. Chen, and Y. Du. 2019. Vibration Analysis of Functionally Graded Porous Cylindrical Shell with Arbitrary Boundary Restraints by using a Semi Analytical Method. Composites Part B: Engineering. 164: 249-264. Doi: 10.1016/j.compositesb.2018.11.046.

M. R. Barati and A. M. Zenkour. 2019. Vibration Analysis of Functionally Graded Graphene Platelet Reinforced Cylindrical Shells with Different Porosity Distributions. Mechanics of Advanced Materials and Structures. 26(18): 1580-1588. Doi: 10.1080/15376494.2018.1444235.

D. Akbaş, Y. A. Fageehi, A. E. Assie, and M. A. Eltaher. 2020. Dynamic Analysis of Viscoelastic Functionally Graded Porous Thick Beams Under Pulse Load. Engineering with Computers. Doi: 10.1007/s00366-020-01070-3.

D. Shahgholian, M. Safarpour, A. R. Rahimi, and A. Alibeigloo. 2020. Buckling Analyses of Functionally Graded Graphene-reinforced Porous Cylindrical Shell using the Rayleigh–Ritz Method. Acta Mechanica. 231(5): 1887-1902. Doi: 10.1007/s00707-020-02616-8.

Y. Zhang, G. Jin, M. Chen, T. Ye, C. Yang, and Y. Yin, Jul. 2020. Free Vibration and Damping Analysis of Porous Functionally Graded Sandwich Plates with a Viscoelastic Core. Composite Structures. 244. Doi: 10.1016/j.compstruct.2020.112298.

Y. Heidari, M. Arefi, and M. Irani Rahaghi. 2020. Nonlocal Vibration Characteristics of a Functionally Graded Porous Cylindrical Nanoshell Integrated with Arbitrary Arrays of Piezoelectric Elements. Mechanics Based Design of Structures and Machines. Doi: 10.1080/15397734.2020.1830799.

Ş. D. Akbaş, A. H. Bashiri, A. E. Assie, and M. A. Eltaher. 2021. Dynamic Analysis of Thick Beams with Functionally Graded Porous Layers and Viscoelastic Support. JVC/Journal of Vibration and Control. 27(13-14): 1644-1655. Doi: 10.1177/1077546320947302.

F. Ebrahimi, N. Farazmandnia, M. R. Kokaba, and V. Mahesh. 2021. Vibration Analysis of Porous Magneto-electro-elastically Actuated Carbon Nanotube-reinforced Composite Sandwich Plate based on a Refined Plate Theory. Engineering with Computers. 37(2): 921-936. Doi: 10.1007/s00366-019-00864-4.

P. H. Cong and N. D. Duc. 2021. Nonlinear Dynamic Analysis of Porous Eccentrically Stiffened Double Curved Shallow Auxetic Shells in Thermal Environments. Thin-Walled Structures. 163. Doi: 10.1016/j.tws.2021.107748.

Njim, E. K., Bakhy, S. H., & Al-Waily, M. 2021. Analytical and Numerical Investigation of Free Vibration Behavior for Sandwich Plate with Functionally Graded Porous Metal Core. Pertanika Journal of Science & Technology. 29(3).

Njim, E. K., Bakhy, S. H., & Al-Waily, M. 2021. Analytical and Numerical Investigation of Buckling Behavior of Functionally Graded Sandwich Plate with Porous Core. Journal of Applied Science and Engineering. 25(2): 339-347.

P. van Vinh. 2022. Nonlocal Free Vibration Characteristics of Power-law and Sigmoid Functionally Graded Nanoplates Considering Variable Nonlocal Parameter. Physica E: Low-Dimensional Systems and Nanostructures. 135. Doi: 10.1016/j.physe.2021.114951.

Y. Zhang, G. Jin, M. Chen, T. Ye, C. Yang, and Y. Yin. 2020. Free Vibration and Damping Analysis of Porous Functionally Graded Sandwich Plates with a Viscoelastic Core. Composite Structures. 244. Doi: 10.1016/j.compstruct.2020.112298.

D. H. Bich and D. G. Ninh. 2017. An Analytical Approach: Nonlinear Vibration of Imperfect Stiffened FGM Sandwich Toroidal Shell Segments Containing Fluid under External Thermo-mechanical Loads. Composite Structures. 162: 164-181. Doi: 10.1016/j.compstruct.2016.11.065.

D. H. Bich, D. van Dung, and V. H. Nam. 2012. Nonlinear Dynamical Analysis of Eccentrically Stiffened Functionally graded Cylindrical Panels. Composite Structures. 94(8): 2465-2473. Doi: 10.1016/j.compstruct.2012.03.012.

P. T. Thang and T. Nguyen-Thoi. 2016. A New Approach for Nonlinear Dynamic Buckling of S-FGM Toroidal Shell Segments with Axial and Circumferential Stiffeners. Aerospace Science and Technology. 53: 1-9. Doi: 10.1016/j.ast.2016.03.008.

M. Darabi, M. Darvizeh, and A. Darvizeh. 2008. Non-linear Analysis of Dynamic Stability for Functionally Graded Cylindrical Shells under Periodic Axial Loading. Composite Structures. 83(2): 201-211. Doi: 10.1016/j.compstruct.2007.04.014.

A. H. Sofiyev and E. Schnack. 2004. The Stability of Functionally Graded Cylindrical Shells under Linearly Increasing Dynamic Torsional Loading. Engineering Structures. 26(10): 1321-1331. Doi: 10.1016/j.engstruct.2004.03.016.

H. Matsunaga. 2008. Free Vibration and Stability of Functionally Graded Shallow Shells according to a 2D Higher-order Deformation Theory. Composite Structures. 84(2): 132-146. Doi: 10.1016/j.compstruct.2007.07.006.

S. M. Chorfi and A. Houmat. 2010. Non-linear Free Vibration of a Functionally Graded Doubly-curved Shallow Shell of Elliptical Plan-form. Composite Structures. 92(10): 2573-2581. Doi: 10.1016/j.compstruct.2010.02.001.

F. Alijani, M. Amabili, K. Karagiozis, and F. Bakhtiari-Nejad. 2011. Nonlinear Vibrations of Functionally Graded Doubly Curved Shallow Shells. Journal of Sound and Vibration. 330(7): 1432-1454. Doi: 10.1016/j.jsv.2010.10.003.

N. D. Duc. 2013. Nonlinear Dynamic Response of Imperfect Eccentrically Stiffened FGM Double Curved Shallow Shells on Elastic Foundation. Composite Structures, 99: 88-9. Doi: 10.1016/j.compstruct.2012.11.017.

Downloads

Published

2022-09-25

Issue

Section

Science and Engineering

How to Cite

FREQUENCY OF NON-LINEAR DYNAMIC RESPONSE OF A POROUS FUNCTIONALLY GRADED CYLINDRICAL PANELS. (2022). Jurnal Teknologi (Sciences & Engineering), 84(6), 59-68. https://doi.org/10.11113/jurnalteknologi.v84.18422