ACTUATOR AND SENSOR FAULT COMPENSATION USING PROPORTIONAL-PROPORTIONAL INTEGRAL OBSERVER FOR FUZZY TRACKING CONTROL OF PENDULUM-CART SYSTEM

Authors

  • Trihastuti Agustinah Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia https://orcid.org/0000-0001-9328-5110
  • Ardiansyah Ardiansyah Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
  • Yusie Rizal Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18439

Keywords:

Fault-Tolerant Control (FTC); Proportional-proportional integral observer (PPIO); T-S Fuzzy, LMI, Pendulum-cart system

Abstract

The pendulum-cart system is a popular system plant as a case study in nonlinear control design and implementation. The controllability and system performance can be influenced by the effectivity of the actuator and sensor. However, actuator and sensor fault sometimes is inevitable and can be occurred during operation. This paper considers fault-tolerant control (FTC) to minimize the actuator and sensor fault. The control objective is to track the sinusoidal reference position of the cart while the pendulum is maintained upright in which the faulty actuator and sensor occurred. Takagi-Sugeno (T-S) fuzzy tracking control is designed based on a compensator scheme where the Proportional-Proportional Integral Observer (PPIO) is utilized for this scheme. The Linear Matrix Inequalities (LMIs) are used to calculate the controller and observer gains. The performance of the proposed controller is verified through simulation and experimental validation. The effectiveness of FTC in the case of actuator and sensor fault is given. The system responses for the compensated and uncompensated controllers (to track the reference signal) are compared. In the case of a sensor fault, only the compensated controller can converge to the reference signal. However, in the case of actuated fault, both compensated and uncompensated controllers converge to the reference signal but the error of the compensated controller is better than the other one.

References

Setyawan, N., Mardiyah, N. A., Achmadiah, M. N., Effendi, R., and Jazidie, A. 2017. Active Fault Tolerant Control for Missing Measurement Problem in a Quarter Car Model with Linear Matrix Inequality Approach. Proceedings of International Electronics Symposium on Engineering Technology and Application. 207-211. DOI: 10.1109/ ELECSYM.2017.8240404.

Bonfe, M., Castaldi, P., Mimmo, N., and Simani, S. 2011. Active Fault Tolerant Control of Nonlinear Systems: The Cart-Pole Example. International Journal of Applied Mathematics and Computer Science. 21(3): 441-455. DOI: 10.2478/ v10006-011-0033-y.

Noura, H., Theilliol, D., Ponsart, J-C., and Chamseddine, A. 2009. Fault-Tolerant Control Systems: Design and Practical Applications. London: Springer-Verlag.

Ye, S., Zhang, Y., Wang, X. and Rabbath, C. A. 2009. Robust Fault-Tolerant Control Using On-line Control Re-allocation with Application to Aircraft. Proceedings of American Control Conference. 5534-5539. DOI: 10.1109/ACC.2009. 5160615.

Indriawati, K., Agustinah, T. & Jazidie, A. 2015. Robust Observer-Based Fault Tolerant Tracking Control for Linear Systems with Simultaneous Actuator and Sensor Faults: Application to a DC Motor System. International Review on Modelling and Simulations. 8(4): 410-417. DOI: 10.15866/ iremos.v8i4.6731.

Shen, Q., Yue, C., Goh, C.H. and Wang, D. 2019. Active Fault-Tolerant Control System Design for Spacecraft Attitude Maneuvers with Actuator Saturation and Faults. IEEE Transactions on Industrial Electronics. 66(5): 3763-3772. DOI: 10.1109/TIE.2018.2854602.

Yang, P., Gao, Z., Zhao, J., Zhou, Z. and Cheng, P. 2017. Fault Tolerant PI Control Design for Satellite Attitude Systems with Actuator Fault. Proceedings of Chinese Automation Congress (CAC). 2026-2030. DOI: 10.1109/CAC.2017. 8243104.

Layadi, N., Djerioui, A., Zeghlache, S., Mekki, H., Houari, A., Gong, J. and Berrabah, F. 2020. Fault-Tolerant Control Based on Sliding Mode Controller for Double-Star Induction Machine. Arab Journal for Science and Engineering. 45(3): 1615-1627. DOI: 10.1007/s13369-019-04120-1.

Lan, J. and Patton, R. J. 2017. Integrated Design of Fault-Tolerant Control for Nonlinear Systems Based on Fault Estimation and T–S Fuzzy Modeling. IEEE Transaction on Fuzzy Systems. 25(5): 1141-1154. DOI: 10.1109/TFUZZ.2016. 2598849.

Hmidi, R., Brahim, A. B., Dhahri, S., Hmida, F. B., and Sellami A. 2020. Sliding Mode Fault-Tolerant Control for Takagi-Sugeno Fuzzy Systems with Local Nonlinear Models: Application to Inverted Pendulum and Cart System. Transactions of the Institute of Measurement and Control. 43(4): 975-990. DOI: 10.1177/0142331220949366.

Latip, S. F. A, Husain, A. R., Ahmad, M. N. and Mohamed, Z. 2016. Fault Tolerant Control for Sensor Fault of a Single-Link Flexible Manipulator System. Jurnal Teknologi. 78(6-13): 59-66.

Navarbaf, A., & Khosrowjerdi, M. J. 2019. Fault-Tolerant Controller Design with Fault Estimation Capability for a Class of Nonlinear Systems Using Generalized Takagi-Sugeno Fuzzy Model. Transactions of the Institute of Measurement and Control. 41(15): 4218-4229. DOI: 10.1177/01423312 19853687.

Wang, H., Liu, X. P., Zhao, X., and Liu, X. 2019. Adaptive Fuzzy Finite-Time Control of Nonlinear Systems with Actuator Faults. IEEE Transactions on Cybernetics. 50(5): 1786-1797.

DOI: https://doi.org/10.1109/TCYB.2019.2902868.

Agustinah, T., Jazidie, A., Nuh, M., & Du, H. 2010. Fuzzy Tracking Control Design Using Observer-based Stabilizing Compensator for Nonlinear Systems. Proceedings of International Conference on System Science and Engineering. 275-280. DOI: 10.1109/ICSSE.2010.5551718.

Khedher, A., Othman, K. B., & Benrejeb, M. 2011. Active Fault Tolerant Control (FTC) Design for Takagi-Sugeno Fuzzy Systems with Weighting Functions Depending on the FTC. International Journal of Computer Sciences. 8(3): 88-96.

Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. 1994. Linear Matrix Inequalities in Systems and Control Theory. SIAM. DOI: 10.1137/1.9781611970777.

Feedback Instrument. 2002. Digital Pendulum-Control Experiment. Feedback Instrument Ltd.

Ogata, K. 2010. Modern Control Engineering. Prentice Hall.

Takagi, T., & Sugeno, M. 1985. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transaction on Systems, Man, and Cybernetics. 1: 116-132.

DOI: 10.1109/TSMC.1985.6313399.

Davison, E. J. 1996. Linear Systems. In: Masten, M. K. (Ed.). Modern Control Systems. IEEE/EAB Press. 93-132.

Rosinova, D. & Hypiusova, M. 2019. LMI Pole Regions for a Robust Discrete-Time Pole Placement Controller Design. Algorithms. 12(8): 1-14. DOI: 10.3390/a12080167.

Downloads

Published

2023-02-23

How to Cite

Agustinah, T. ., Ardiansyah, A., & Rizal, Y. . (2023). ACTUATOR AND SENSOR FAULT COMPENSATION USING PROPORTIONAL-PROPORTIONAL INTEGRAL OBSERVER FOR FUZZY TRACKING CONTROL OF PENDULUM-CART SYSTEM. Jurnal Teknologi, 85(2), 157–165. https://doi.org/10.11113/jurnalteknologi.v85.18439

Issue

Section

Science and Engineering